| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq1b.a |
|- ( ph -> A e. V ) |
| 2 |
|
preq1b.b |
|- ( ph -> B e. W ) |
| 3 |
|
prid1g |
|- ( A e. V -> A e. { A , C } ) |
| 4 |
1 3
|
syl |
|- ( ph -> A e. { A , C } ) |
| 5 |
|
eleq2 |
|- ( { A , C } = { B , C } -> ( A e. { A , C } <-> A e. { B , C } ) ) |
| 6 |
4 5
|
syl5ibcom |
|- ( ph -> ( { A , C } = { B , C } -> A e. { B , C } ) ) |
| 7 |
|
elprg |
|- ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
| 9 |
6 8
|
sylibd |
|- ( ph -> ( { A , C } = { B , C } -> ( A = B \/ A = C ) ) ) |
| 10 |
9
|
imp |
|- ( ( ph /\ { A , C } = { B , C } ) -> ( A = B \/ A = C ) ) |
| 11 |
|
prid1g |
|- ( B e. W -> B e. { B , C } ) |
| 12 |
2 11
|
syl |
|- ( ph -> B e. { B , C } ) |
| 13 |
|
eleq2 |
|- ( { A , C } = { B , C } -> ( B e. { A , C } <-> B e. { B , C } ) ) |
| 14 |
12 13
|
syl5ibrcom |
|- ( ph -> ( { A , C } = { B , C } -> B e. { A , C } ) ) |
| 15 |
|
elprg |
|- ( B e. W -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) |
| 16 |
2 15
|
syl |
|- ( ph -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) |
| 17 |
14 16
|
sylibd |
|- ( ph -> ( { A , C } = { B , C } -> ( B = A \/ B = C ) ) ) |
| 18 |
17
|
imp |
|- ( ( ph /\ { A , C } = { B , C } ) -> ( B = A \/ B = C ) ) |
| 19 |
|
eqcom |
|- ( A = B <-> B = A ) |
| 20 |
|
eqeq2 |
|- ( A = C -> ( B = A <-> B = C ) ) |
| 21 |
10 18 19 20
|
oplem1 |
|- ( ( ph /\ { A , C } = { B , C } ) -> A = B ) |
| 22 |
21
|
ex |
|- ( ph -> ( { A , C } = { B , C } -> A = B ) ) |
| 23 |
|
preq1 |
|- ( A = B -> { A , C } = { B , C } ) |
| 24 |
22 23
|
impbid1 |
|- ( ph -> ( { A , C } = { B , C } <-> A = B ) ) |