Metamath Proof Explorer


Theorem oplem1

Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)

Ref Expression
Hypotheses oplem1.1
|- ( ph -> ( ps \/ ch ) )
oplem1.2
|- ( ph -> ( th \/ ta ) )
oplem1.3
|- ( ps <-> th )
oplem1.4
|- ( ch -> ( th <-> ta ) )
Assertion oplem1
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 oplem1.1
 |-  ( ph -> ( ps \/ ch ) )
2 oplem1.2
 |-  ( ph -> ( th \/ ta ) )
3 oplem1.3
 |-  ( ps <-> th )
4 oplem1.4
 |-  ( ch -> ( th <-> ta ) )
5 3 notbii
 |-  ( -. ps <-> -. th )
6 1 ord
 |-  ( ph -> ( -. ps -> ch ) )
7 5 6 syl5bir
 |-  ( ph -> ( -. th -> ch ) )
8 2 ord
 |-  ( ph -> ( -. th -> ta ) )
9 7 8 jcad
 |-  ( ph -> ( -. th -> ( ch /\ ta ) ) )
10 4 biimpar
 |-  ( ( ch /\ ta ) -> th )
11 9 10 syl6
 |-  ( ph -> ( -. th -> th ) )
12 11 pm2.18d
 |-  ( ph -> th )
13 12 3 sylibr
 |-  ( ph -> ps )