Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oplem1.1 | |- ( ph -> ( ps \/ ch ) ) |
|
oplem1.2 | |- ( ph -> ( th \/ ta ) ) |
||
oplem1.3 | |- ( ps <-> th ) |
||
oplem1.4 | |- ( ch -> ( th <-> ta ) ) |
||
Assertion | oplem1 | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oplem1.1 | |- ( ph -> ( ps \/ ch ) ) |
|
2 | oplem1.2 | |- ( ph -> ( th \/ ta ) ) |
|
3 | oplem1.3 | |- ( ps <-> th ) |
|
4 | oplem1.4 | |- ( ch -> ( th <-> ta ) ) |
|
5 | 3 | notbii | |- ( -. ps <-> -. th ) |
6 | 1 | ord | |- ( ph -> ( -. ps -> ch ) ) |
7 | 5 6 | syl5bir | |- ( ph -> ( -. th -> ch ) ) |
8 | 2 | ord | |- ( ph -> ( -. th -> ta ) ) |
9 | 7 8 | jcad | |- ( ph -> ( -. th -> ( ch /\ ta ) ) ) |
10 | 4 | biimpar | |- ( ( ch /\ ta ) -> th ) |
11 | 9 10 | syl6 | |- ( ph -> ( -. th -> th ) ) |
12 | 11 | pm2.18d | |- ( ph -> th ) |
13 | 12 3 | sylibr | |- ( ph -> ps ) |