Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preq1b.a | |- ( ph -> A e. V ) |
|
| preq1b.b | |- ( ph -> B e. W ) |
||
| Assertion | preq2b | |- ( ph -> ( { C , A } = { C , B } <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1b.a | |- ( ph -> A e. V ) |
|
| 2 | preq1b.b | |- ( ph -> B e. W ) |
|
| 3 | prcom | |- { C , A } = { A , C } |
|
| 4 | prcom | |- { C , B } = { B , C } |
|
| 5 | 3 4 | eqeq12i | |- ( { C , A } = { C , B } <-> { A , C } = { B , C } ) |
| 6 | 1 2 | preq1b | |- ( ph -> ( { A , C } = { B , C } <-> A = B ) ) |
| 7 | 5 6 | bitrid | |- ( ph -> ( { C , A } = { C , B } <-> A = B ) ) |