Metamath Proof Explorer


Theorem preq2b

Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020)

Ref Expression
Hypotheses preq1b.a ( 𝜑𝐴𝑉 )
preq1b.b ( 𝜑𝐵𝑊 )
Assertion preq2b ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 preq1b.a ( 𝜑𝐴𝑉 )
2 preq1b.b ( 𝜑𝐵𝑊 )
3 prcom { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 }
4 prcom { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 }
5 3 4 eqeq12i ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )
6 1 2 preq1b ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) )
7 5 6 bitrid ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) )