Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preq1b.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
preq1b.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
Assertion | preq2b | ⊢ ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1b.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | preq1b.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
3 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
4 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
5 | 3 4 | eqeq12i | ⊢ ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |
6 | 1 2 | preq1b | ⊢ ( 𝜑 → ( { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ↔ 𝐴 = 𝐵 ) ) |
7 | 5 6 | bitrid | ⊢ ( 𝜑 → ( { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ↔ 𝐴 = 𝐵 ) ) |