| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 2 |  | prmoval |  |-  ( 1 e. NN0 -> ( #p ` 1 ) = prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( #p ` 1 ) = prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) | 
						
							| 4 |  | 1z |  |-  1 e. ZZ | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 |  | 1nprm |  |-  -. 1 e. Prime | 
						
							| 7 |  | eleq1 |  |-  ( k = 1 -> ( k e. Prime <-> 1 e. Prime ) ) | 
						
							| 8 | 6 7 | mtbiri |  |-  ( k = 1 -> -. k e. Prime ) | 
						
							| 9 | 8 | iffalsed |  |-  ( k = 1 -> if ( k e. Prime , k , 1 ) = 1 ) | 
						
							| 10 | 9 | fprod1 |  |-  ( ( 1 e. ZZ /\ 1 e. CC ) -> prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) = 1 ) | 
						
							| 11 | 4 5 10 | mp2an |  |-  prod_ k e. ( 1 ... 1 ) if ( k e. Prime , k , 1 ) = 1 | 
						
							| 12 | 3 11 | eqtri |  |-  ( #p ` 1 ) = 1 |