| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 2 |  | prmoval | ⊢ ( 1  ∈  ℕ0  →  ( #p ‘ 1 )  =  ∏ 𝑘  ∈  ( 1 ... 1 ) if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 1 )  =  ∏ 𝑘  ∈  ( 1 ... 1 ) if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 ) | 
						
							| 4 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 |  | 1nprm | ⊢ ¬  1  ∈  ℙ | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  ∈  ℙ  ↔  1  ∈  ℙ ) ) | 
						
							| 8 | 6 7 | mtbiri | ⊢ ( 𝑘  =  1  →  ¬  𝑘  ∈  ℙ ) | 
						
							| 9 | 8 | iffalsed | ⊢ ( 𝑘  =  1  →  if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  =  1 ) | 
						
							| 10 | 9 | fprod1 | ⊢ ( ( 1  ∈  ℤ  ∧  1  ∈  ℂ )  →  ∏ 𝑘  ∈  ( 1 ... 1 ) if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  =  1 ) | 
						
							| 11 | 4 5 10 | mp2an | ⊢ ∏ 𝑘  ∈  ( 1 ... 1 ) if ( 𝑘  ∈  ℙ ,  𝑘 ,  1 )  =  1 | 
						
							| 12 | 3 11 | eqtri | ⊢ ( #p ‘ 1 )  =  1 |