| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmocl |  |-  ( N e. NN0 -> ( #p ` N ) e. NN ) | 
						
							| 2 | 1 | nnzd |  |-  ( N e. NN0 -> ( #p ` N ) e. ZZ ) | 
						
							| 3 |  | fzssz |  |-  ( 1 ... N ) C_ ZZ | 
						
							| 4 |  | fzfid |  |-  ( N e. NN0 -> ( 1 ... N ) e. Fin ) | 
						
							| 5 |  | 0nelfz1 |  |-  0 e/ ( 1 ... N ) | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN0 -> 0 e/ ( 1 ... N ) ) | 
						
							| 7 |  | lcmfn0cl |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) | 
						
							| 8 | 3 4 6 7 | mp3an2i |  |-  ( N e. NN0 -> ( _lcm ` ( 1 ... N ) ) e. NN ) | 
						
							| 9 | 2 8 | jca |  |-  ( N e. NN0 -> ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) ) | 
						
							| 10 |  | prmodvdslcmf |  |-  ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) ) | 
						
							| 11 |  | dvdsle |  |-  ( ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) -> ( ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) | 
						
							| 12 | 9 10 11 | sylc |  |-  ( N e. NN0 -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) |