| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmocl |
|- ( N e. NN0 -> ( #p ` N ) e. NN ) |
| 2 |
1
|
nnzd |
|- ( N e. NN0 -> ( #p ` N ) e. ZZ ) |
| 3 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
| 4 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
| 5 |
|
0nelfz1 |
|- 0 e/ ( 1 ... N ) |
| 6 |
5
|
a1i |
|- ( N e. NN0 -> 0 e/ ( 1 ... N ) ) |
| 7 |
|
lcmfn0cl |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 8 |
3 4 6 7
|
mp3an2i |
|- ( N e. NN0 -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 9 |
2 8
|
jca |
|- ( N e. NN0 -> ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) ) |
| 10 |
|
prmodvdslcmf |
|- ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) ) |
| 11 |
|
dvdsle |
|- ( ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) -> ( ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
| 12 |
9 10 11
|
sylc |
|- ( N e. NN0 -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) |