| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 2 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 4 | 3 | eqcomd |  |-  ( N e. NN -> N = ( ( N - 1 ) + 1 ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( N e. NN -> ( #p ` N ) = ( #p ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 6 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 7 |  | prmop1 |  |-  ( ( N - 1 ) e. NN0 -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) | 
						
							| 9 | 3 | eleq1d |  |-  ( N e. NN -> ( ( ( N - 1 ) + 1 ) e. Prime <-> N e. Prime ) ) | 
						
							| 10 | 3 | oveq2d |  |-  ( N e. NN -> ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( #p ` ( N - 1 ) ) x. N ) ) | 
						
							| 11 | 9 10 | ifbieq1d |  |-  ( N e. NN -> if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) | 
						
							| 12 | 5 8 11 | 3eqtrd |  |-  ( N e. NN -> ( #p ` N ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |