| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 2 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 3 |
1 2
|
syl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 4 |
3
|
eqcomd |
|- ( N e. NN -> N = ( ( N - 1 ) + 1 ) ) |
| 5 |
4
|
fveq2d |
|- ( N e. NN -> ( #p ` N ) = ( #p ` ( ( N - 1 ) + 1 ) ) ) |
| 6 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 7 |
|
prmop1 |
|- ( ( N - 1 ) e. NN0 -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) |
| 8 |
6 7
|
syl |
|- ( N e. NN -> ( #p ` ( ( N - 1 ) + 1 ) ) = if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) ) |
| 9 |
3
|
eleq1d |
|- ( N e. NN -> ( ( ( N - 1 ) + 1 ) e. Prime <-> N e. Prime ) ) |
| 10 |
3
|
oveq2d |
|- ( N e. NN -> ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( #p ` ( N - 1 ) ) x. N ) ) |
| 11 |
9 10
|
ifbieq1d |
|- ( N e. NN -> if ( ( ( N - 1 ) + 1 ) e. Prime , ( ( #p ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) , ( #p ` ( N - 1 ) ) ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |
| 12 |
5 8 11
|
3eqtrd |
|- ( N e. NN -> ( #p ` N ) = if ( N e. Prime , ( ( #p ` ( N - 1 ) ) x. N ) , ( #p ` ( N - 1 ) ) ) ) |