| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | prmonn2 |  |-  ( 2 e. NN -> ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) | 
						
							| 4 |  | 2prm |  |-  2 e. Prime | 
						
							| 5 | 4 | iftruei |  |-  if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = ( ( #p ` ( 2 - 1 ) ) x. 2 ) | 
						
							| 6 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 7 | 6 | fveq2i |  |-  ( #p ` ( 2 - 1 ) ) = ( #p ` 1 ) | 
						
							| 8 |  | prmo1 |  |-  ( #p ` 1 ) = 1 | 
						
							| 9 | 7 8 | eqtri |  |-  ( #p ` ( 2 - 1 ) ) = 1 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( #p ` ( 2 - 1 ) ) x. 2 ) = ( 1 x. 2 ) | 
						
							| 11 |  | 2cn |  |-  2 e. CC | 
						
							| 12 | 11 | mullidi |  |-  ( 1 x. 2 ) = 2 | 
						
							| 13 | 10 12 | eqtri |  |-  ( ( #p ` ( 2 - 1 ) ) x. 2 ) = 2 | 
						
							| 14 | 5 13 | eqtri |  |-  if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = 2 | 
						
							| 15 | 3 14 | eqtri |  |-  ( #p ` 2 ) = 2 |