| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
|
prmonn2 |
|- ( 2 e. NN -> ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) |
| 4 |
|
2prm |
|- 2 e. Prime |
| 5 |
4
|
iftruei |
|- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = ( ( #p ` ( 2 - 1 ) ) x. 2 ) |
| 6 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 7 |
6
|
fveq2i |
|- ( #p ` ( 2 - 1 ) ) = ( #p ` 1 ) |
| 8 |
|
prmo1 |
|- ( #p ` 1 ) = 1 |
| 9 |
7 8
|
eqtri |
|- ( #p ` ( 2 - 1 ) ) = 1 |
| 10 |
9
|
oveq1i |
|- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = ( 1 x. 2 ) |
| 11 |
|
2cn |
|- 2 e. CC |
| 12 |
11
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 13 |
10 12
|
eqtri |
|- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = 2 |
| 14 |
5 13
|
eqtri |
|- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = 2 |
| 15 |
3 14
|
eqtri |
|- ( #p ` 2 ) = 2 |