| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3nn |  |-  3 e. NN | 
						
							| 2 |  | prmonn2 |  |-  ( 3 e. NN -> ( #p ` 3 ) = if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( #p ` 3 ) = if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) | 
						
							| 4 |  | 3prm |  |-  3 e. Prime | 
						
							| 5 | 4 | iftruei |  |-  if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) = ( ( #p ` ( 3 - 1 ) ) x. 3 ) | 
						
							| 6 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 7 | 6 | fveq2i |  |-  ( #p ` ( 3 - 1 ) ) = ( #p ` 2 ) | 
						
							| 8 |  | prmo2 |  |-  ( #p ` 2 ) = 2 | 
						
							| 9 | 7 8 | eqtri |  |-  ( #p ` ( 3 - 1 ) ) = 2 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( #p ` ( 3 - 1 ) ) x. 3 ) = ( 2 x. 3 ) | 
						
							| 11 |  | 3cn |  |-  3 e. CC | 
						
							| 12 |  | 2cn |  |-  2 e. CC | 
						
							| 13 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 14 | 11 12 13 | mulcomli |  |-  ( 2 x. 3 ) = 6 | 
						
							| 15 | 10 14 | eqtri |  |-  ( ( #p ` ( 3 - 1 ) ) x. 3 ) = 6 | 
						
							| 16 | 5 15 | eqtri |  |-  if ( 3 e. Prime , ( ( #p ` ( 3 - 1 ) ) x. 3 ) , ( #p ` ( 3 - 1 ) ) ) = 6 | 
						
							| 17 | 3 16 | eqtri |  |-  ( #p ` 3 ) = 6 |