Metamath Proof Explorer


Theorem prmo2

Description: The primorial of 2. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo2 #p2=2

Proof

Step Hyp Ref Expression
1 2nn 2
2 prmonn2 2#p2=if2#p212#p21
3 1 2 ax-mp #p2=if2#p212#p21
4 2prm 2
5 4 iftruei if2#p212#p21=#p212
6 2m1e1 21=1
7 6 fveq2i #p21=#p1
8 prmo1 #p1=1
9 7 8 eqtri #p21=1
10 9 oveq1i #p212=12
11 2cn 2
12 11 mullidi 12=2
13 10 12 eqtri #p212=2
14 5 13 eqtri if2#p212#p21=2
15 3 14 eqtri #p2=2