| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
⊢ 2 ∈ ℕ |
| 2 |
|
prmonn2 |
⊢ ( 2 ∈ ℕ → ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( #p ‘ 2 ) = if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) |
| 4 |
|
2prm |
⊢ 2 ∈ ℙ |
| 5 |
4
|
iftruei |
⊢ if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = ( ( #p ‘ ( 2 − 1 ) ) · 2 ) |
| 6 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 7 |
6
|
fveq2i |
⊢ ( #p ‘ ( 2 − 1 ) ) = ( #p ‘ 1 ) |
| 8 |
|
prmo1 |
⊢ ( #p ‘ 1 ) = 1 |
| 9 |
7 8
|
eqtri |
⊢ ( #p ‘ ( 2 − 1 ) ) = 1 |
| 10 |
9
|
oveq1i |
⊢ ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = ( 1 · 2 ) |
| 11 |
|
2cn |
⊢ 2 ∈ ℂ |
| 12 |
11
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
| 13 |
10 12
|
eqtri |
⊢ ( ( #p ‘ ( 2 − 1 ) ) · 2 ) = 2 |
| 14 |
5 13
|
eqtri |
⊢ if ( 2 ∈ ℙ , ( ( #p ‘ ( 2 − 1 ) ) · 2 ) , ( #p ‘ ( 2 − 1 ) ) ) = 2 |
| 15 |
3 14
|
eqtri |
⊢ ( #p ‘ 2 ) = 2 |