Metamath Proof Explorer


Theorem problem3

Description: Practice problem 3. Clues: eqcomi eqtri subaddrii recni 4re 3re 1re df-4 addcomi . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses problem3.1
|- A e. CC
problem3.2
|- ( A + 3 ) = 4
Assertion problem3
|- A = 1

Proof

Step Hyp Ref Expression
1 problem3.1
 |-  A e. CC
2 problem3.2
 |-  ( A + 3 ) = 4
3 4re
 |-  4 e. RR
4 3 recni
 |-  4 e. CC
5 3re
 |-  3 e. RR
6 5 recni
 |-  3 e. CC
7 1re
 |-  1 e. RR
8 7 recni
 |-  1 e. CC
9 df-4
 |-  4 = ( 3 + 1 )
10 9 eqcomi
 |-  ( 3 + 1 ) = 4
11 4 6 8 10 subaddrii
 |-  ( 4 - 3 ) = 1
12 11 eqcomi
 |-  1 = ( 4 - 3 )
13 6 1 addcomi
 |-  ( 3 + A ) = ( A + 3 )
14 13 2 eqtri
 |-  ( 3 + A ) = 4
15 4 6 1 14 subaddrii
 |-  ( 4 - 3 ) = A
16 12 15 eqtri
 |-  1 = A
17 16 eqcomi
 |-  A = 1