Description: Practice problem 3. Clues: eqcomi eqtri subaddrii recni 4re 3re 1re df-4 addcomi . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | problem3.1 | ⊢ 𝐴 ∈ ℂ | |
| problem3.2 | ⊢ ( 𝐴 + 3 ) = 4 | ||
| Assertion | problem3 | ⊢ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | problem3.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | problem3.2 | ⊢ ( 𝐴 + 3 ) = 4 | |
| 3 | 4re | ⊢ 4 ∈ ℝ | |
| 4 | 3 | recni | ⊢ 4 ∈ ℂ |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 5 | recni | ⊢ 3 ∈ ℂ |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | 7 | recni | ⊢ 1 ∈ ℂ |
| 9 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 10 | 9 | eqcomi | ⊢ ( 3 + 1 ) = 4 |
| 11 | 4 6 8 10 | subaddrii | ⊢ ( 4 − 3 ) = 1 |
| 12 | 11 | eqcomi | ⊢ 1 = ( 4 − 3 ) |
| 13 | 6 1 | addcomi | ⊢ ( 3 + 𝐴 ) = ( 𝐴 + 3 ) |
| 14 | 13 2 | eqtri | ⊢ ( 3 + 𝐴 ) = 4 |
| 15 | 4 6 1 14 | subaddrii | ⊢ ( 4 − 3 ) = 𝐴 |
| 16 | 12 15 | eqtri | ⊢ 1 = 𝐴 |
| 17 | 16 | eqcomi | ⊢ 𝐴 = 1 |