Metamath Proof Explorer


Theorem problem3

Description: Practice problem 3. Clues: eqcomi eqtri subaddrii recni 4re 3re 1re df-4 addcomi . (Contributed by Filip Cernatescu, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses problem3.1 𝐴 ∈ ℂ
problem3.2 ( 𝐴 + 3 ) = 4
Assertion problem3 𝐴 = 1

Proof

Step Hyp Ref Expression
1 problem3.1 𝐴 ∈ ℂ
2 problem3.2 ( 𝐴 + 3 ) = 4
3 4re 4 ∈ ℝ
4 3 recni 4 ∈ ℂ
5 3re 3 ∈ ℝ
6 5 recni 3 ∈ ℂ
7 1re 1 ∈ ℝ
8 7 recni 1 ∈ ℂ
9 df-4 4 = ( 3 + 1 )
10 9 eqcomi ( 3 + 1 ) = 4
11 4 6 8 10 subaddrii ( 4 − 3 ) = 1
12 11 eqcomi 1 = ( 4 − 3 )
13 6 1 addcomi ( 3 + 𝐴 ) = ( 𝐴 + 3 )
14 13 2 eqtri ( 3 + 𝐴 ) = 4
15 4 6 1 14 subaddrii ( 4 − 3 ) = 𝐴
16 12 15 eqtri 1 = 𝐴
17 16 eqcomi 𝐴 = 1