Step |
Hyp |
Ref |
Expression |
1 |
|
prprelb |
|- ( V e. W -> ( p e. ( PrPairs ` V ) <-> ( p e. ~P V /\ ( # ` p ) = 2 ) ) ) |
2 |
1
|
anbi1d |
|- ( V e. W -> ( ( p e. ( PrPairs ` V ) /\ ph ) <-> ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) ) ) |
3 |
|
anass |
|- ( ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
4 |
2 3
|
bitrdi |
|- ( V e. W -> ( ( p e. ( PrPairs ` V ) /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) ) |
5 |
4
|
eubidv |
|- ( V e. W -> ( E! p ( p e. ( PrPairs ` V ) /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) ) |
6 |
|
df-reu |
|- ( E! p e. ( PrPairs ` V ) ph <-> E! p ( p e. ( PrPairs ` V ) /\ ph ) ) |
7 |
|
df-reu |
|- ( E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
8 |
5 6 7
|
3bitr4g |
|- ( V e. W -> ( E! p e. ( PrPairs ` V ) ph <-> E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) ) ) |