Metamath Proof Explorer


Theorem prprreueq

Description: There is a unique proper unordered pair over a given set V fulfilling a wff iff there is a unique subset of V of size two fulfilling this wff. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprreueq ( 𝑉𝑊 → ( ∃! 𝑝 ∈ ( Pairsproper𝑉 ) 𝜑 ↔ ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 prprelb ( 𝑉𝑊 → ( 𝑝 ∈ ( Pairsproper𝑉 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) )
2 1 anbi1d ( 𝑉𝑊 → ( ( 𝑝 ∈ ( Pairsproper𝑉 ) ∧ 𝜑 ) ↔ ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) ) )
3 anass ( ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ∧ 𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
4 2 3 bitrdi ( 𝑉𝑊 → ( ( 𝑝 ∈ ( Pairsproper𝑉 ) ∧ 𝜑 ) ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) )
5 4 eubidv ( 𝑉𝑊 → ( ∃! 𝑝 ( 𝑝 ∈ ( Pairsproper𝑉 ) ∧ 𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) ) )
6 df-reu ( ∃! 𝑝 ∈ ( Pairsproper𝑉 ) 𝜑 ↔ ∃! 𝑝 ( 𝑝 ∈ ( Pairsproper𝑉 ) ∧ 𝜑 ) )
7 df-reu ( ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ↔ ∃! 𝑝 ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )
8 5 6 7 3bitr4g ( 𝑉𝑊 → ( ∃! 𝑝 ∈ ( Pairsproper𝑉 ) 𝜑 ↔ ∃! 𝑝 ∈ 𝒫 𝑉 ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜑 ) ) )