Step |
Hyp |
Ref |
Expression |
1 |
|
sbcpr.x |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
sbc5 |
⊢ ( [ { 𝑎 , 𝑏 } / 𝑝 ] 𝜑 ↔ ∃ 𝑝 ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) ) |
3 |
|
preq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) |
4 |
3
|
eqcomd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { 𝑎 , 𝑏 } = { 𝑥 , 𝑦 } ) |
5 |
4
|
eqeq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑝 = { 𝑎 , 𝑏 } ↔ 𝑝 = { 𝑥 , 𝑦 } ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → 𝑝 = { 𝑥 , 𝑦 } ) |
7 |
6 1
|
syl |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜑 ↔ 𝜓 ) ) |
8 |
7
|
biimpd |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜑 → 𝜓 ) ) |
9 |
8
|
expcom |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝜑 → 𝜓 ) ) ) |
10 |
9
|
expd |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝑥 = 𝑎 → ( 𝑦 = 𝑏 → ( 𝜑 → 𝜓 ) ) ) ) |
11 |
10
|
com24 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜑 → ( 𝑦 = 𝑏 → ( 𝑥 = 𝑎 → 𝜓 ) ) ) ) |
12 |
11
|
imp31 |
⊢ ( ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) ∧ 𝑦 = 𝑏 ) → ( 𝑥 = 𝑎 → 𝜓 ) ) |
13 |
12
|
alrimiv |
⊢ ( ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) ∧ 𝑦 = 𝑏 ) → ∀ 𝑥 ( 𝑥 = 𝑎 → 𝜓 ) ) |
14 |
|
vex |
⊢ 𝑎 ∈ V |
15 |
14
|
sbc6 |
⊢ ( [ 𝑎 / 𝑥 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑎 → 𝜓 ) ) |
16 |
13 15
|
sylibr |
⊢ ( ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) ∧ 𝑦 = 𝑏 ) → [ 𝑎 / 𝑥 ] 𝜓 ) |
17 |
16
|
ex |
⊢ ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) → ( 𝑦 = 𝑏 → [ 𝑎 / 𝑥 ] 𝜓 ) ) |
18 |
17
|
alrimiv |
⊢ ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) → ∀ 𝑦 ( 𝑦 = 𝑏 → [ 𝑎 / 𝑥 ] 𝜓 ) ) |
19 |
|
vex |
⊢ 𝑏 ∈ V |
20 |
19
|
sbc6 |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → [ 𝑎 / 𝑥 ] 𝜓 ) ) |
21 |
18 20
|
sylibr |
⊢ ( ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) → [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) |
22 |
21
|
exlimiv |
⊢ ( ∃ 𝑝 ( 𝑝 = { 𝑎 , 𝑏 } ∧ 𝜑 ) → [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) |
23 |
2 22
|
sylbi |
⊢ ( [ { 𝑎 , 𝑏 } / 𝑝 ] 𝜑 → [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) |
24 |
|
sbc5 |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = 𝑏 ∧ [ 𝑎 / 𝑥 ] 𝜓 ) ) |
25 |
|
sbc5 |
⊢ ( [ 𝑎 / 𝑥 ] 𝜓 ↔ ∃ 𝑥 ( 𝑥 = 𝑎 ∧ 𝜓 ) ) |
26 |
1
|
bicomd |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( 𝜓 ↔ 𝜑 ) ) |
27 |
6 26
|
syl |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜓 ↔ 𝜑 ) ) |
28 |
27
|
biimpd |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜓 → 𝜑 ) ) |
29 |
28
|
expcom |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝜓 → 𝜑 ) ) ) |
30 |
29
|
com13 |
⊢ ( 𝜓 → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) ) |
31 |
30
|
expd |
⊢ ( 𝜓 → ( 𝑥 = 𝑎 → ( 𝑦 = 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) ) ) |
32 |
31
|
impcom |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝜓 ) → ( 𝑦 = 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) ) |
33 |
32
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑎 ∧ 𝜓 ) → ( 𝑦 = 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) ) |
34 |
25 33
|
sylbi |
⊢ ( [ 𝑎 / 𝑥 ] 𝜓 → ( 𝑦 = 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) ) |
35 |
34
|
impcom |
⊢ ( ( 𝑦 = 𝑏 ∧ [ 𝑎 / 𝑥 ] 𝜓 ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) |
36 |
35
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑏 ∧ [ 𝑎 / 𝑥 ] 𝜓 ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) |
37 |
24 36
|
sylbi |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) |
38 |
37
|
alrimiv |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 → ∀ 𝑝 ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) |
39 |
|
prex |
⊢ { 𝑎 , 𝑏 } ∈ V |
40 |
39
|
sbc6 |
⊢ ( [ { 𝑎 , 𝑏 } / 𝑝 ] 𝜑 ↔ ∀ 𝑝 ( 𝑝 = { 𝑎 , 𝑏 } → 𝜑 ) ) |
41 |
38 40
|
sylibr |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 → [ { 𝑎 , 𝑏 } / 𝑝 ] 𝜑 ) |
42 |
23 41
|
impbii |
⊢ ( [ { 𝑎 , 𝑏 } / 𝑝 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) |