Step |
Hyp |
Ref |
Expression |
1 |
|
reupr.a |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
reupr.x |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
nfsbc1v |
⊢ Ⅎ 𝑝 [ 𝑞 / 𝑝 ] 𝜓 |
4 |
|
nfsbc1v |
⊢ Ⅎ 𝑝 [ 𝑤 / 𝑝 ] 𝜓 |
5 |
|
sbceq1a |
⊢ ( 𝑝 = 𝑤 → ( 𝜓 ↔ [ 𝑤 / 𝑝 ] 𝜓 ) ) |
6 |
|
dfsbcq |
⊢ ( 𝑤 = 𝑞 → ( [ 𝑤 / 𝑝 ] 𝜓 ↔ [ 𝑞 / 𝑝 ] 𝜓 ) ) |
7 |
3 4 5 6
|
reu8nf |
⊢ ( ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) 𝜓 ↔ ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
8 |
|
sprel |
⊢ ( 𝑝 ∈ ( Pairs ‘ 𝑋 ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } ) |
9 |
1
|
biimpcd |
⊢ ( 𝜓 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
12 |
11
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → 𝜒 ) |
13 |
|
pm3.22 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
15 |
|
prelspr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑋 ) ) |
16 |
|
dfsbcq |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( [ 𝑞 / 𝑝 ] 𝜓 ↔ [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 ) ) |
17 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( 𝑝 = 𝑞 ↔ 𝑝 = { 𝑥 , 𝑦 } ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑞 = { 𝑥 , 𝑦 } ) → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
20 |
15 19
|
rspcdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
21 |
14 20
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
22 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
23 |
22 2
|
sbcie |
⊢ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 ↔ 𝜃 ) |
24 |
|
pm2.27 |
⊢ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → 𝑝 = { 𝑥 , 𝑦 } ) ) |
25 |
23 24
|
sylbir |
⊢ ( 𝜃 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → 𝑝 = { 𝑥 , 𝑦 } ) ) |
26 |
|
eqcom |
⊢ ( { 𝑥 , 𝑦 } = 𝑝 ↔ 𝑝 = { 𝑥 , 𝑦 } ) |
27 |
25 26
|
syl6ibr |
⊢ ( 𝜃 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → { 𝑥 , 𝑦 } = 𝑝 ) ) |
28 |
27
|
com12 |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( 𝜃 → { 𝑥 , 𝑦 } = 𝑝 ) ) |
29 |
|
eqeq2 |
⊢ ( { 𝑎 , 𝑏 } = 𝑝 → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = 𝑝 ) ) |
30 |
29
|
eqcoms |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = 𝑝 ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( 𝜃 → { 𝑥 , 𝑦 } = 𝑝 ) ) ) |
32 |
28 31
|
syl5ibrcom |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
33 |
32
|
a1d |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
34 |
21 33
|
syl6 |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
35 |
34
|
expimpd |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
36 |
35
|
expimpd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
37 |
36
|
imp4c |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
38 |
37
|
impcom |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
39 |
38
|
ralrimivva |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
40 |
12 39
|
jca |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
41 |
40
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
42 |
41
|
reximdvva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
43 |
42
|
expcom |
⊢ ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( 𝑋 ∈ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
44 |
43
|
com13 |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ( 𝑋 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
45 |
8 44
|
syl |
⊢ ( 𝑝 ∈ ( Pairs ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
46 |
45
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ) → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
47 |
46
|
rexlimdva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
48 |
|
prelspr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ) |
50 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → 𝜒 ) |
51 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑐 / 𝑥 ] 𝜃 |
52 |
|
nfv |
⊢ Ⅎ 𝑥 { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } |
53 |
51 52
|
nfim |
⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) |
54 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 |
55 |
|
nfv |
⊢ Ⅎ 𝑦 { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } |
56 |
54 55
|
nfim |
⊢ Ⅎ 𝑦 ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) |
57 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑐 → ( 𝜃 ↔ [ 𝑐 / 𝑥 ] 𝜃 ) ) |
58 |
|
preq1 |
⊢ ( 𝑥 = 𝑐 → { 𝑥 , 𝑦 } = { 𝑐 , 𝑦 } ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑥 = 𝑐 → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
60 |
57 59
|
imbi12d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
61 |
|
sbceq1a |
⊢ ( 𝑦 = 𝑑 → ( [ 𝑐 / 𝑥 ] 𝜃 ↔ [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 ) ) |
62 |
|
preq2 |
⊢ ( 𝑦 = 𝑑 → { 𝑐 , 𝑦 } = { 𝑐 , 𝑑 } ) |
63 |
62
|
eqeq1d |
⊢ ( 𝑦 = 𝑑 → ( { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
64 |
61 63
|
imbi12d |
⊢ ( 𝑦 = 𝑑 → ( ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
65 |
53 56 60 64
|
rspc2 |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
66 |
65
|
ad2antlr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) ∧ 𝜒 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
67 |
2
|
sbcpr |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 ↔ [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 ) |
68 |
|
pm2.27 |
⊢ ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
69 |
67 68
|
sylbi |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
70 |
|
eqcom |
⊢ ( { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ↔ { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) |
71 |
69 70
|
syl6ibr |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
72 |
71
|
com12 |
⊢ ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
73 |
66 72
|
syl6 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) ∧ 𝜒 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
74 |
73
|
expimpd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
75 |
74
|
expcom |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) ) |
76 |
75
|
impd |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
77 |
76
|
impcom |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
78 |
|
dfsbcq |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 ↔ [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 ) ) |
79 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( { 𝑎 , 𝑏 } = 𝑞 ↔ { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
80 |
78 79
|
imbi12d |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ↔ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
81 |
77 80
|
syl5ibrcom |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
82 |
81
|
rexlimdvva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ( ∃ 𝑐 ∈ 𝑋 ∃ 𝑑 ∈ 𝑋 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
83 |
|
sprel |
⊢ ( 𝑞 ∈ ( Pairs ‘ 𝑋 ) → ∃ 𝑐 ∈ 𝑋 ∃ 𝑑 ∈ 𝑋 𝑞 = { 𝑐 , 𝑑 } ) |
84 |
82 83
|
impel |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ) → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
85 |
84
|
ralrimiva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
86 |
|
nfv |
⊢ Ⅎ 𝑝 𝜒 |
87 |
|
nfcv |
⊢ Ⅎ 𝑝 ( Pairs ‘ 𝑋 ) |
88 |
|
nfv |
⊢ Ⅎ 𝑝 { 𝑎 , 𝑏 } = 𝑞 |
89 |
3 88
|
nfim |
⊢ Ⅎ 𝑝 ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) |
90 |
87 89
|
nfralw |
⊢ Ⅎ 𝑝 ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) |
91 |
86 90
|
nfan |
⊢ Ⅎ 𝑝 ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
92 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝑝 = 𝑞 ↔ { 𝑎 , 𝑏 } = 𝑞 ) ) |
93 |
92
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
94 |
93
|
ralbidv |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
95 |
1 94
|
anbi12d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ↔ ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
96 |
91 95
|
rspce |
⊢ ( ( { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ∧ ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
97 |
49 50 85 96
|
syl12anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
98 |
97
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ) |
99 |
98
|
rexlimdvva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ) |
100 |
47 99
|
impbid |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
101 |
7 100
|
syl5bb |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) 𝜓 ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |