| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reupr.a | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | reupr.x | ⊢ ( 𝑝  =  { 𝑥 ,  𝑦 }  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 3 |  | nfsbc1v | ⊢ Ⅎ 𝑝 [ 𝑞  /  𝑝 ] 𝜓 | 
						
							| 4 |  | nfsbc1v | ⊢ Ⅎ 𝑝 [ 𝑤  /  𝑝 ] 𝜓 | 
						
							| 5 |  | sbceq1a | ⊢ ( 𝑝  =  𝑤  →  ( 𝜓  ↔  [ 𝑤  /  𝑝 ] 𝜓 ) ) | 
						
							| 6 |  | dfsbcq | ⊢ ( 𝑤  =  𝑞  →  ( [ 𝑤  /  𝑝 ] 𝜓  ↔  [ 𝑞  /  𝑝 ] 𝜓 ) ) | 
						
							| 7 | 3 4 5 6 | reu8nf | ⊢ ( ∃! 𝑝  ∈  ( Pairs ‘ 𝑋 ) 𝜓  ↔  ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) ) | 
						
							| 8 |  | sprel | ⊢ ( 𝑝  ∈  ( Pairs ‘ 𝑋 )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 𝑝  =  { 𝑎 ,  𝑏 } ) | 
						
							| 9 | 1 | biimpcd | ⊢ ( 𝜓  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  𝜒 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  𝜒 ) ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  𝜒 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  𝜒 ) | 
						
							| 13 |  | pm3.22 | ⊢ ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑋  ∈  𝑉 )  ∧  𝜓 )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) ) | 
						
							| 15 |  | prelspr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  { 𝑥 ,  𝑦 }  ∈  ( Pairs ‘ 𝑋 ) ) | 
						
							| 16 |  | dfsbcq | ⊢ ( 𝑞  =  { 𝑥 ,  𝑦 }  →  ( [ 𝑞  /  𝑝 ] 𝜓  ↔  [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓 ) ) | 
						
							| 17 |  | eqeq2 | ⊢ ( 𝑞  =  { 𝑥 ,  𝑦 }  →  ( 𝑝  =  𝑞  ↔  𝑝  =  { 𝑥 ,  𝑦 } ) ) | 
						
							| 18 | 16 17 | imbi12d | ⊢ ( 𝑞  =  { 𝑥 ,  𝑦 }  →  ( ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  ↔  ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  𝑞  =  { 𝑥 ,  𝑦 } )  →  ( ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  ↔  ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 20 | 15 19 | rspcdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  →  ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 21 | 14 20 | syl | ⊢ ( ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑋  ∈  𝑉 )  ∧  𝜓 )  →  ( ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  →  ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 22 |  | zfpair2 | ⊢ { 𝑥 ,  𝑦 }  ∈  V | 
						
							| 23 | 22 2 | sbcie | ⊢ ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  ↔  𝜃 ) | 
						
							| 24 |  | pm2.27 | ⊢ ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) | 
						
							| 25 | 23 24 | sylbir | ⊢ ( 𝜃  →  ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  𝑝  =  { 𝑥 ,  𝑦 } ) ) | 
						
							| 26 |  | eqcom | ⊢ ( { 𝑥 ,  𝑦 }  =  𝑝  ↔  𝑝  =  { 𝑥 ,  𝑦 } ) | 
						
							| 27 | 25 26 | imbitrrdi | ⊢ ( 𝜃  →  ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  { 𝑥 ,  𝑦 }  =  𝑝 ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  𝑝 ) ) | 
						
							| 29 |  | eqeq2 | ⊢ ( { 𝑎 ,  𝑏 }  =  𝑝  →  ( { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝑥 ,  𝑦 }  =  𝑝 ) ) | 
						
							| 30 | 29 | eqcoms | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝑥 ,  𝑦 }  =  𝑝 ) ) | 
						
							| 31 | 30 | imbi2d | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  ↔  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  𝑝 ) ) ) | 
						
							| 32 | 28 31 | syl5ibrcom | ⊢ ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 33 | 32 | a1d | ⊢ ( ( [ { 𝑥 ,  𝑦 }  /  𝑝 ] 𝜓  →  𝑝  =  { 𝑥 ,  𝑦 } )  →  ( ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 34 | 21 33 | syl6 | ⊢ ( ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑋  ∈  𝑉 )  ∧  𝜓 )  →  ( ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  →  ( ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 35 | 34 | expimpd | ⊢ ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ( ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 36 | 35 | expimpd | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  →  ( ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 37 | 36 | imp4c | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 39 | 38 | ralrimivva | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 40 | 12 39 | jca | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 42 | 41 | reximdvva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) )  →  ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 𝑝  =  { 𝑎 ,  𝑏 }  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 43 | 42 | expcom | ⊢ ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ( 𝑋  ∈  𝑉  →  ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 𝑝  =  { 𝑎 ,  𝑏 }  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 44 | 43 | com13 | ⊢ ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝑋  ∈  𝑉  →  ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 45 | 8 44 | syl | ⊢ ( 𝑝  ∈  ( Pairs ‘ 𝑋 )  →  ( 𝑋  ∈  𝑉  →  ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) ) | 
						
							| 46 | 45 | impcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑝  ∈  ( Pairs ‘ 𝑋 ) )  →  ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 47 | 46 | rexlimdva | ⊢ ( 𝑋  ∈  𝑉  →  ( ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  →  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 48 |  | prelspr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  { 𝑎 ,  𝑏 }  ∈  ( Pairs ‘ 𝑋 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  { 𝑎 ,  𝑏 }  ∈  ( Pairs ‘ 𝑋 ) ) | 
						
							| 50 |  | simprl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  𝜒 ) | 
						
							| 51 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑐  /  𝑥 ] 𝜃 | 
						
							| 52 |  | nfv | ⊢ Ⅎ 𝑥 { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 } | 
						
							| 53 | 51 52 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 54 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃 | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑦 { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } | 
						
							| 56 | 54 55 | nfim | ⊢ Ⅎ 𝑦 ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 57 |  | sbceq1a | ⊢ ( 𝑥  =  𝑐  →  ( 𝜃  ↔  [ 𝑐  /  𝑥 ] 𝜃 ) ) | 
						
							| 58 |  | preq1 | ⊢ ( 𝑥  =  𝑐  →  { 𝑥 ,  𝑦 }  =  { 𝑐 ,  𝑦 } ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( 𝑥  =  𝑐  →  ( { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 60 | 57 59 | imbi12d | ⊢ ( 𝑥  =  𝑐  →  ( ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  ↔  ( [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 61 |  | sbceq1a | ⊢ ( 𝑦  =  𝑑  →  ( [ 𝑐  /  𝑥 ] 𝜃  ↔  [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃 ) ) | 
						
							| 62 |  | preq2 | ⊢ ( 𝑦  =  𝑑  →  { 𝑐 ,  𝑦 }  =  { 𝑐 ,  𝑑 } ) | 
						
							| 63 | 62 | eqeq1d | ⊢ ( 𝑦  =  𝑑  →  ( { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 64 | 61 63 | imbi12d | ⊢ ( 𝑦  =  𝑑  →  ( ( [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  ↔  ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 65 | 53 56 60 64 | rspc2 | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  →  ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 66 | 65 | ad2antlr | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 ) )  ∧  𝜒 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  →  ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 67 | 2 | sbcpr | ⊢ ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  ↔  [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃 ) | 
						
							| 68 |  | pm2.27 | ⊢ ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  ( ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } )  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 69 | 67 68 | sylbi | ⊢ ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  ( ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } )  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 70 |  | eqcom | ⊢ ( { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 }  ↔  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 71 | 69 70 | imbitrrdi | ⊢ ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  ( ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } )  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) | 
						
							| 72 | 71 | com12 | ⊢ ( ( [ 𝑑  /  𝑦 ] [ 𝑐  /  𝑥 ] 𝜃  →  { 𝑐 ,  𝑑 }  =  { 𝑎 ,  𝑏 } )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) | 
						
							| 73 | 66 72 | syl6 | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 ) )  ∧  𝜒 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) ) | 
						
							| 74 | 73 | expimpd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 ) )  →  ( ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) ) | 
						
							| 75 | 74 | expcom | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 )  →  ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) ) ) | 
						
							| 76 | 75 | impd | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 )  →  ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) ) | 
						
							| 77 | 76 | impcom | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 ) )  →  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) | 
						
							| 78 |  | dfsbcq | ⊢ ( 𝑞  =  { 𝑐 ,  𝑑 }  →  ( [ 𝑞  /  𝑝 ] 𝜓  ↔  [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓 ) ) | 
						
							| 79 |  | eqeq2 | ⊢ ( 𝑞  =  { 𝑐 ,  𝑑 }  →  ( { 𝑎 ,  𝑏 }  =  𝑞  ↔  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) | 
						
							| 80 | 78 79 | imbi12d | ⊢ ( 𝑞  =  { 𝑐 ,  𝑑 }  →  ( ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 )  ↔  ( [ { 𝑐 ,  𝑑 }  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  { 𝑐 ,  𝑑 } ) ) ) | 
						
							| 81 | 77 80 | syl5ibrcom | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  ∧  ( 𝑐  ∈  𝑋  ∧  𝑑  ∈  𝑋 ) )  →  ( 𝑞  =  { 𝑐 ,  𝑑 }  →  ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 82 | 81 | rexlimdvva | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  ( ∃ 𝑐  ∈  𝑋 ∃ 𝑑  ∈  𝑋 𝑞  =  { 𝑐 ,  𝑑 }  →  ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 83 |  | sprel | ⊢ ( 𝑞  ∈  ( Pairs ‘ 𝑋 )  →  ∃ 𝑐  ∈  𝑋 ∃ 𝑑  ∈  𝑋 𝑞  =  { 𝑐 ,  𝑑 } ) | 
						
							| 84 | 82 83 | impel | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  ∧  𝑞  ∈  ( Pairs ‘ 𝑋 ) )  →  ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) | 
						
							| 85 | 84 | ralrimiva | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) | 
						
							| 86 |  | nfv | ⊢ Ⅎ 𝑝 𝜒 | 
						
							| 87 |  | nfcv | ⊢ Ⅎ 𝑝 ( Pairs ‘ 𝑋 ) | 
						
							| 88 |  | nfv | ⊢ Ⅎ 𝑝 { 𝑎 ,  𝑏 }  =  𝑞 | 
						
							| 89 | 3 88 | nfim | ⊢ Ⅎ 𝑝 ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) | 
						
							| 90 | 87 89 | nfralw | ⊢ Ⅎ 𝑝 ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) | 
						
							| 91 | 86 90 | nfan | ⊢ Ⅎ 𝑝 ( 𝜒  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) | 
						
							| 92 |  | eqeq1 | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( 𝑝  =  𝑞  ↔  { 𝑎 ,  𝑏 }  =  𝑞 ) ) | 
						
							| 93 | 92 | imbi2d | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  ↔  ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 94 | 93 | ralbidv | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 )  ↔  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) | 
						
							| 95 | 1 94 | anbi12d | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  ↔  ( 𝜒  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) ) ) | 
						
							| 96 | 91 95 | rspce | ⊢ ( ( { 𝑎 ,  𝑏 }  ∈  ( Pairs ‘ 𝑋 )  ∧  ( 𝜒  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  { 𝑎 ,  𝑏 }  =  𝑞 ) ) )  →  ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) ) | 
						
							| 97 | 49 50 85 96 | syl12anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  ∧  ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) )  →  ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) ) | 
						
							| 98 | 97 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) )  →  ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) ) ) | 
						
							| 99 | 98 | rexlimdvva | ⊢ ( 𝑋  ∈  𝑉  →  ( ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) )  →  ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) ) ) ) | 
						
							| 100 | 47 99 | impbid | ⊢ ( 𝑋  ∈  𝑉  →  ( ∃ 𝑝  ∈  ( Pairs ‘ 𝑋 ) ( 𝜓  ∧  ∀ 𝑞  ∈  ( Pairs ‘ 𝑋 ) ( [ 𝑞  /  𝑝 ] 𝜓  →  𝑝  =  𝑞 ) )  ↔  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) | 
						
							| 101 | 7 100 | bitrid | ⊢ ( 𝑋  ∈  𝑉  →  ( ∃! 𝑝  ∈  ( Pairs ‘ 𝑋 ) 𝜓  ↔  ∃ 𝑎  ∈  𝑋 ∃ 𝑏  ∈  𝑋 ( 𝜒  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝜃  →  { 𝑥 ,  𝑦 }  =  { 𝑎 ,  𝑏 } ) ) ) ) |