Step |
Hyp |
Ref |
Expression |
1 |
|
reupr.a |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
reupr.x |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
prprsprreu |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃! 𝑝 ∈ ( Pairsproper ‘ 𝑋 ) 𝜓 ↔ ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜓 ) ) ) |
4 |
|
fveqeq2 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
5 |
|
hashprg |
⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
6 |
5
|
el2v |
⊢ ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
7 |
4 6
|
bitr4di |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ♯ ‘ 𝑝 ) = 2 ↔ 𝑎 ≠ 𝑏 ) ) |
8 |
7 1
|
anbi12d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜓 ) ↔ ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ) ) |
9 |
|
fveqeq2 |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
10 |
|
hashprg |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ≠ 𝑦 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
11 |
10
|
el2v |
⊢ ( 𝑥 ≠ 𝑦 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) |
12 |
9 11
|
bitr4di |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( ( ♯ ‘ 𝑝 ) = 2 ↔ 𝑥 ≠ 𝑦 ) ) |
13 |
12 2
|
anbi12d |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜓 ) ↔ ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) ) ) |
14 |
8 13
|
reupr |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( ( ♯ ‘ 𝑝 ) = 2 ∧ 𝜓 ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
15 |
|
df-3an |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ↔ ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
16 |
15
|
bicomi |
⊢ ( ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ↔ ( 𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
17 |
16
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ↔ ( 𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
18 |
17
|
2rexbidv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( ( 𝑎 ≠ 𝑏 ∧ 𝜒 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
19 |
3 14 18
|
3bitrd |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃! 𝑝 ∈ ( Pairsproper ‘ 𝑋 ) 𝜓 ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ≠ 𝑦 ∧ 𝜃 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |