Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reupr.a | |
|
reupr.x | |
||
Assertion | reuprpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reupr.a | |
|
2 | reupr.x | |
|
3 | prprsprreu | |
|
4 | fveqeq2 | |
|
5 | hashprg | |
|
6 | 5 | el2v | |
7 | 4 6 | bitr4di | |
8 | 7 1 | anbi12d | |
9 | fveqeq2 | |
|
10 | hashprg | |
|
11 | 10 | el2v | |
12 | 9 11 | bitr4di | |
13 | 12 2 | anbi12d | |
14 | 8 13 | reupr | |
15 | df-3an | |
|
16 | 15 | bicomi | |
17 | 16 | a1i | |
18 | 17 | 2rexbidv | |
19 | 3 14 18 | 3bitrd | |