Metamath Proof Explorer


Theorem reuprpr

Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023)

Ref Expression
Hypotheses reupr.a p=abψχ
reupr.x p=xyψθ
Assertion reuprpr XV∃!pPrPairsXψaXbXabχxXyXxyθxy=ab

Proof

Step Hyp Ref Expression
1 reupr.a p=abψχ
2 reupr.x p=xyψθ
3 prprsprreu XV∃!pPrPairsXψ∃!pPairsXp=2ψ
4 fveqeq2 p=abp=2ab=2
5 hashprg aVbVabab=2
6 5 el2v abab=2
7 4 6 bitr4di p=abp=2ab
8 7 1 anbi12d p=abp=2ψabχ
9 fveqeq2 p=xyp=2xy=2
10 hashprg xVyVxyxy=2
11 10 el2v xyxy=2
12 9 11 bitr4di p=xyp=2xy
13 12 2 anbi12d p=xyp=2ψxyθ
14 8 13 reupr XV∃!pPairsXp=2ψaXbXabχxXyXxyθxy=ab
15 df-3an abχxXyXxyθxy=ababχxXyXxyθxy=ab
16 15 bicomi abχxXyXxyθxy=ababχxXyXxyθxy=ab
17 16 a1i XVabχxXyXxyθxy=ababχxXyXxyθxy=ab
18 17 2rexbidv XVaXbXabχxXyXxyθxy=abaXbXabχxXyXxyθxy=ab
19 3 14 18 3bitrd XV∃!pPrPairsXψaXbXabχxXyXxyθxy=ab