Metamath Proof Explorer


Theorem prprsprreu

Description: There is a unique proper unordered pair over a given set V fulfilling a wff iff there is a unique unordered pair over V of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023)

Ref Expression
Assertion prprsprreu VW∃!pPrPairsVφ∃!pPairsVp=2φ

Proof

Step Hyp Ref Expression
1 prprspr2 PrPairsV=pPairsV|p=2
2 1 reqabi pPrPairsVpPairsVp=2
3 2 a1i VWpPrPairsVpPairsVp=2
4 3 anbi1d VWpPrPairsVφpPairsVp=2φ
5 anass pPairsVp=2φpPairsVp=2φ
6 4 5 bitrdi VWpPrPairsVφpPairsVp=2φ
7 6 eubidv VW∃!ppPrPairsVφ∃!ppPairsVp=2φ
8 df-reu ∃!pPrPairsVφ∃!ppPrPairsVφ
9 df-reu ∃!pPairsVp=2φ∃!ppPairsVp=2φ
10 7 8 9 3bitr4g VW∃!pPrPairsVφ∃!pPairsVp=2φ