Metamath Proof Explorer


Theorem poprelb

Description: Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023)

Ref Expression
Assertion poprelb Rel R R Po X A X B X A R B C R D A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 simp2 Rel R R Po X A X B X A R B C R D A X B X
2 an3 Rel R R Po X A R B C R D Rel R C R D
3 2 3adant2 Rel R R Po X A X B X A R B C R D Rel R C R D
4 brrelex12 Rel R C R D C V D V
5 3 4 syl Rel R R Po X A X B X A R B C R D C V D V
6 preq12bg A X B X C V D V A B = C D A = C B = D A = D B = C
7 1 5 6 syl2anc Rel R R Po X A X B X A R B C R D A B = C D A = C B = D A = D B = C
8 idd Rel R R Po X A X B X A R B C R D A = C B = D A = C B = D
9 breq12 B = C A = D B R A C R D
10 9 ancoms A = D B = C B R A C R D
11 10 bicomd A = D B = C C R D B R A
12 11 anbi2d A = D B = C A R B C R D A R B B R A
13 po2nr R Po X A X B X ¬ A R B B R A
14 13 adantll Rel R R Po X A X B X ¬ A R B B R A
15 14 pm2.21d Rel R R Po X A X B X A R B B R A A = C B = D
16 15 ex Rel R R Po X A X B X A R B B R A A = C B = D
17 16 com13 A R B B R A A X B X Rel R R Po X A = C B = D
18 12 17 syl6bi A = D B = C A R B C R D A X B X Rel R R Po X A = C B = D
19 18 com23 A = D B = C A X B X A R B C R D Rel R R Po X A = C B = D
20 19 com14 Rel R R Po X A X B X A R B C R D A = D B = C A = C B = D
21 20 3imp Rel R R Po X A X B X A R B C R D A = D B = C A = C B = D
22 8 21 jaod Rel R R Po X A X B X A R B C R D A = C B = D A = D B = C A = C B = D
23 orc A = C B = D A = C B = D A = D B = C
24 22 23 impbid1 Rel R R Po X A X B X A R B C R D A = C B = D A = D B = C A = C B = D
25 7 24 bitrd Rel R R Po X A X B X A R B C R D A B = C D A = C B = D