Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
2 |
|
an3 |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( Rel 𝑅 ∧ 𝐶 𝑅 𝐷 ) ) |
3 |
2
|
3adant2 |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( Rel 𝑅 ∧ 𝐶 𝑅 𝐷 ) ) |
4 |
|
brrelex12 |
⊢ ( ( Rel 𝑅 ∧ 𝐶 𝑅 𝐷 ) → ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) |
5 |
3 4
|
syl |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) |
6 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
7 |
1 5 6
|
syl2anc |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
8 |
|
idd |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
9 |
|
breq12 |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝐴 = 𝐷 ) → ( 𝐵 𝑅 𝐴 ↔ 𝐶 𝑅 𝐷 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐵 𝑅 𝐴 ↔ 𝐶 𝑅 𝐷 ) ) |
11 |
10
|
bicomd |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐵 𝑅 𝐴 ) ) |
12 |
11
|
anbi2d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) ) |
13 |
|
po2nr |
⊢ ( ( 𝑅 Po 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) |
14 |
13
|
adantll |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) |
15 |
14
|
pm2.21d |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
16 |
15
|
ex |
⊢ ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
17 |
16
|
com13 |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
18 |
12 17
|
syl6bi |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) ) |
19 |
18
|
com23 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) ) |
20 |
19
|
com14 |
⊢ ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) ) |
21 |
20
|
3imp |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
22 |
8 21
|
jaod |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
23 |
|
orc |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
24 |
22 23
|
impbid1 |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
25 |
7 24
|
bitrd |
⊢ ( ( ( Rel 𝑅 ∧ 𝑅 Po 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐶 𝑅 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |