| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 2 |  | an3 | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 ) ) | 
						
							| 3 | 2 | 3adant2 | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 ) ) | 
						
							| 4 |  | brrelex12 | ⊢ ( ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 )  →  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) ) | 
						
							| 6 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 7 | 1 5 6 | syl2anc | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) ) | 
						
							| 8 |  | idd | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 9 |  | breq12 | ⊢ ( ( 𝐵  =  𝐶  ∧  𝐴  =  𝐷 )  →  ( 𝐵 𝑅 𝐴  ↔  𝐶 𝑅 𝐷 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐵 𝑅 𝐴  ↔  𝐶 𝑅 𝐷 ) ) | 
						
							| 11 | 10 | bicomd | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐶 𝑅 𝐷  ↔  𝐵 𝑅 𝐴 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  ↔  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) ) ) | 
						
							| 13 |  | po2nr | ⊢ ( ( 𝑅  Po  𝑋  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) ) | 
						
							| 15 | 14 | pm2.21d | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 17 | 16 | com13 | ⊢ ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 18 | 12 17 | biimtrdi | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) ) | 
						
							| 20 | 19 | com14 | ⊢ ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) ) | 
						
							| 21 | 20 | 3imp | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 22 | 8 21 | jaod | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 23 |  | orc | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) | 
						
							| 24 | 22 23 | impbid1 | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 25 | 7 24 | bitrd | ⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) |