Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( A e. X /\ B e. X ) ) |
2 |
|
an3 |
|- ( ( ( Rel R /\ R Po X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) ) |
3 |
2
|
3adant2 |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) ) |
4 |
|
brrelex12 |
|- ( ( Rel R /\ C R D ) -> ( C e. _V /\ D e. _V ) ) |
5 |
3 4
|
syl |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( C e. _V /\ D e. _V ) ) |
6 |
|
preq12bg |
|- ( ( ( A e. X /\ B e. X ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
7 |
1 5 6
|
syl2anc |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
8 |
|
idd |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) ) |
9 |
|
breq12 |
|- ( ( B = C /\ A = D ) -> ( B R A <-> C R D ) ) |
10 |
9
|
ancoms |
|- ( ( A = D /\ B = C ) -> ( B R A <-> C R D ) ) |
11 |
10
|
bicomd |
|- ( ( A = D /\ B = C ) -> ( C R D <-> B R A ) ) |
12 |
11
|
anbi2d |
|- ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) <-> ( A R B /\ B R A ) ) ) |
13 |
|
po2nr |
|- ( ( R Po X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) |
14 |
13
|
adantll |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) |
15 |
14
|
pm2.21d |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) ) |
16 |
15
|
ex |
|- ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) ) ) |
17 |
16
|
com13 |
|- ( ( A R B /\ B R A ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) |
18 |
12 17
|
syl6bi |
|- ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) ) |
19 |
18
|
com23 |
|- ( ( A = D /\ B = C ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) ) |
20 |
19
|
com14 |
|- ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) ) |
21 |
20
|
3imp |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) |
22 |
8 21
|
jaod |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) |
23 |
|
orc |
|- ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
24 |
22 23
|
impbid1 |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) |
25 |
7 24
|
bitrd |
|- ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |