| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( A e. X /\ B e. X ) ) | 
						
							| 2 |  | an3 |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) ) | 
						
							| 3 | 2 | 3adant2 |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) ) | 
						
							| 4 |  | brrelex12 |  |-  ( ( Rel R /\ C R D ) -> ( C e. _V /\ D e. _V ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( C e. _V /\ D e. _V ) ) | 
						
							| 6 |  | preq12bg |  |-  ( ( ( A e. X /\ B e. X ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
							| 7 | 1 5 6 | syl2anc |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
							| 8 |  | idd |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) ) | 
						
							| 9 |  | breq12 |  |-  ( ( B = C /\ A = D ) -> ( B R A <-> C R D ) ) | 
						
							| 10 | 9 | ancoms |  |-  ( ( A = D /\ B = C ) -> ( B R A <-> C R D ) ) | 
						
							| 11 | 10 | bicomd |  |-  ( ( A = D /\ B = C ) -> ( C R D <-> B R A ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) <-> ( A R B /\ B R A ) ) ) | 
						
							| 13 |  | po2nr |  |-  ( ( R Po X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) | 
						
							| 14 | 13 | adantll |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) ) | 
						
							| 15 | 14 | pm2.21d |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) ) ) | 
						
							| 17 | 16 | com13 |  |-  ( ( A R B /\ B R A ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) | 
						
							| 18 | 12 17 | biimtrdi |  |-  ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) ) | 
						
							| 19 | 18 | com23 |  |-  ( ( A = D /\ B = C ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) ) | 
						
							| 20 | 19 | com14 |  |-  ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) ) | 
						
							| 21 | 20 | 3imp |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) | 
						
							| 22 | 8 21 | jaod |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) | 
						
							| 23 |  | orc |  |-  ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) | 
						
							| 24 | 22 23 | impbid1 |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) | 
						
							| 25 | 7 24 | bitrd |  |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |