Description: The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbcpr.x | |
|
Assertion | sbcpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcpr.x | |
|
2 | sbc5 | |
|
3 | preq12 | |
|
4 | 3 | eqcomd | |
5 | 4 | eqeq2d | |
6 | 5 | biimpa | |
7 | 6 1 | syl | |
8 | 7 | biimpd | |
9 | 8 | expcom | |
10 | 9 | expd | |
11 | 10 | com24 | |
12 | 11 | imp31 | |
13 | 12 | alrimiv | |
14 | vex | |
|
15 | 14 | sbc6 | |
16 | 13 15 | sylibr | |
17 | 16 | ex | |
18 | 17 | alrimiv | |
19 | vex | |
|
20 | 19 | sbc6 | |
21 | 18 20 | sylibr | |
22 | 21 | exlimiv | |
23 | 2 22 | sylbi | |
24 | sbc5 | |
|
25 | sbc5 | |
|
26 | 1 | bicomd | |
27 | 6 26 | syl | |
28 | 27 | biimpd | |
29 | 28 | expcom | |
30 | 29 | com13 | |
31 | 30 | expd | |
32 | 31 | impcom | |
33 | 32 | exlimiv | |
34 | 25 33 | sylbi | |
35 | 34 | impcom | |
36 | 35 | exlimiv | |
37 | 24 36 | sylbi | |
38 | 37 | alrimiv | |
39 | prex | |
|
40 | 39 | sbc6 | |
41 | 38 40 | sylibr | |
42 | 23 41 | impbii | |