Metamath Proof Explorer


Theorem sbcpr

Description: The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023)

Ref Expression
Hypothesis sbcpr.x p=xyφψ
Assertion sbcpr [˙ab/p]˙φ[˙b/y]˙[˙a/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcpr.x p=xyφψ
2 sbc5 [˙ab/p]˙φpp=abφ
3 preq12 x=ay=bxy=ab
4 3 eqcomd x=ay=bab=xy
5 4 eqeq2d x=ay=bp=abp=xy
6 5 biimpa x=ay=bp=abp=xy
7 6 1 syl x=ay=bp=abφψ
8 7 biimpd x=ay=bp=abφψ
9 8 expcom p=abx=ay=bφψ
10 9 expd p=abx=ay=bφψ
11 10 com24 p=abφy=bx=aψ
12 11 imp31 p=abφy=bx=aψ
13 12 alrimiv p=abφy=bxx=aψ
14 vex aV
15 14 sbc6 [˙a/x]˙ψxx=aψ
16 13 15 sylibr p=abφy=b[˙a/x]˙ψ
17 16 ex p=abφy=b[˙a/x]˙ψ
18 17 alrimiv p=abφyy=b[˙a/x]˙ψ
19 vex bV
20 19 sbc6 [˙b/y]˙[˙a/x]˙ψyy=b[˙a/x]˙ψ
21 18 20 sylibr p=abφ[˙b/y]˙[˙a/x]˙ψ
22 21 exlimiv pp=abφ[˙b/y]˙[˙a/x]˙ψ
23 2 22 sylbi [˙ab/p]˙φ[˙b/y]˙[˙a/x]˙ψ
24 sbc5 [˙b/y]˙[˙a/x]˙ψyy=b[˙a/x]˙ψ
25 sbc5 [˙a/x]˙ψxx=aψ
26 1 bicomd p=xyψφ
27 6 26 syl x=ay=bp=abψφ
28 27 biimpd x=ay=bp=abψφ
29 28 expcom p=abx=ay=bψφ
30 29 com13 ψx=ay=bp=abφ
31 30 expd ψx=ay=bp=abφ
32 31 impcom x=aψy=bp=abφ
33 32 exlimiv xx=aψy=bp=abφ
34 25 33 sylbi [˙a/x]˙ψy=bp=abφ
35 34 impcom y=b[˙a/x]˙ψp=abφ
36 35 exlimiv yy=b[˙a/x]˙ψp=abφ
37 24 36 sylbi [˙b/y]˙[˙a/x]˙ψp=abφ
38 37 alrimiv [˙b/y]˙[˙a/x]˙ψpp=abφ
39 prex abV
40 39 sbc6 [˙ab/p]˙φpp=abφ
41 38 40 sylibr [˙b/y]˙[˙a/x]˙ψ[˙ab/p]˙φ
42 23 41 impbii [˙ab/p]˙φ[˙b/y]˙[˙a/x]˙ψ