Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
|- B = ( Base ` K ) |
2 |
|
ordtNEW.l |
|- .<_ = ( ( le ` K ) i^i ( B X. B ) ) |
3 |
1 2
|
prsss |
|- ( ( K e. Proset /\ A C_ B ) -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) ) |
4 |
3
|
dmeqd |
|- ( ( K e. Proset /\ A C_ B ) -> dom ( .<_ i^i ( A X. A ) ) = dom ( ( le ` K ) i^i ( A X. A ) ) ) |
5 |
1
|
ressprs |
|- ( ( K e. Proset /\ A C_ B ) -> ( K |`s A ) e. Proset ) |
6 |
|
eqid |
|- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
7 |
|
eqid |
|- ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
8 |
6 7
|
prsdm |
|- ( ( K |`s A ) e. Proset -> dom ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( Base ` ( K |`s A ) ) ) |
9 |
5 8
|
syl |
|- ( ( K e. Proset /\ A C_ B ) -> dom ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( Base ` ( K |`s A ) ) ) |
10 |
|
eqid |
|- ( K |`s A ) = ( K |`s A ) |
11 |
10 1
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` ( K |`s A ) ) ) |
12 |
|
fvex |
|- ( Base ` ( K |`s A ) ) e. _V |
13 |
11 12
|
eqeltrdi |
|- ( A C_ B -> A e. _V ) |
14 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
15 |
10 14
|
ressle |
|- ( A e. _V -> ( le ` K ) = ( le ` ( K |`s A ) ) ) |
16 |
13 15
|
syl |
|- ( A C_ B -> ( le ` K ) = ( le ` ( K |`s A ) ) ) |
17 |
16
|
adantl |
|- ( ( K e. Proset /\ A C_ B ) -> ( le ` K ) = ( le ` ( K |`s A ) ) ) |
18 |
11
|
adantl |
|- ( ( K e. Proset /\ A C_ B ) -> A = ( Base ` ( K |`s A ) ) ) |
19 |
18
|
sqxpeqd |
|- ( ( K e. Proset /\ A C_ B ) -> ( A X. A ) = ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
20 |
17 19
|
ineq12d |
|- ( ( K e. Proset /\ A C_ B ) -> ( ( le ` K ) i^i ( A X. A ) ) = ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
21 |
20
|
dmeqd |
|- ( ( K e. Proset /\ A C_ B ) -> dom ( ( le ` K ) i^i ( A X. A ) ) = dom ( ( le ` ( K |`s A ) ) i^i ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
22 |
9 21 18
|
3eqtr4d |
|- ( ( K e. Proset /\ A C_ B ) -> dom ( ( le ` K ) i^i ( A X. A ) ) = A ) |
23 |
4 22
|
eqtrd |
|- ( ( K e. Proset /\ A C_ B ) -> dom ( .<_ i^i ( A X. A ) ) = A ) |