Metamath Proof Explorer


Theorem prsssdm

Description: Domain of a subproset relation. (Contributed by Thierry Arnoux, 12-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B=BaseK
ordtNEW.l ˙=KB×B
Assertion prsssdm KProsetABdom˙A×A=A

Proof

Step Hyp Ref Expression
1 ordtNEW.b B=BaseK
2 ordtNEW.l ˙=KB×B
3 1 2 prsss KProsetAB˙A×A=KA×A
4 3 dmeqd KProsetABdom˙A×A=domKA×A
5 1 ressprs KProsetABK𝑠AProset
6 eqid BaseK𝑠A=BaseK𝑠A
7 eqid K𝑠ABaseK𝑠A×BaseK𝑠A=K𝑠ABaseK𝑠A×BaseK𝑠A
8 6 7 prsdm K𝑠AProsetdomK𝑠ABaseK𝑠A×BaseK𝑠A=BaseK𝑠A
9 5 8 syl KProsetABdomK𝑠ABaseK𝑠A×BaseK𝑠A=BaseK𝑠A
10 eqid K𝑠A=K𝑠A
11 10 1 ressbas2 ABA=BaseK𝑠A
12 fvex BaseK𝑠AV
13 11 12 eqeltrdi ABAV
14 eqid K=K
15 10 14 ressle AVK=K𝑠A
16 13 15 syl ABK=K𝑠A
17 16 adantl KProsetABK=K𝑠A
18 11 adantl KProsetABA=BaseK𝑠A
19 18 sqxpeqd KProsetABA×A=BaseK𝑠A×BaseK𝑠A
20 17 19 ineq12d KProsetABKA×A=K𝑠ABaseK𝑠A×BaseK𝑠A
21 20 dmeqd KProsetABdomKA×A=domK𝑠ABaseK𝑠A×BaseK𝑠A
22 9 21 18 3eqtr4d KProsetABdomKA×A=A
23 4 22 eqtrd KProsetABdom˙A×A=A