Metamath Proof Explorer


Theorem prsdm

Description: Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015)

Ref Expression
Hypotheses ordtNEW.b B=BaseK
ordtNEW.l ˙=KB×B
Assertion prsdm KProsetdom˙=B

Proof

Step Hyp Ref Expression
1 ordtNEW.b B=BaseK
2 ordtNEW.l ˙=KB×B
3 2 dmeqi dom˙=domKB×B
4 3 eleq2i xdom˙xdomKB×B
5 vex xV
6 5 eldm2 xdomKB×ByxyKB×B
7 eqid K=K
8 1 7 prsref KProsetxBxKx
9 df-br xKxxxK
10 8 9 sylib KProsetxBxxK
11 simpr KProsetxBxB
12 11 11 opelxpd KProsetxBxxB×B
13 10 12 elind KProsetxBxxKB×B
14 opeq2 y=xxy=xx
15 14 eleq1d y=xxyKB×BxxKB×B
16 5 15 spcev xxKB×ByxyKB×B
17 13 16 syl KProsetxByxyKB×B
18 17 ex KProsetxByxyKB×B
19 elinel2 xyKB×BxyB×B
20 opelxp1 xyB×BxB
21 19 20 syl xyKB×BxB
22 21 exlimiv yxyKB×BxB
23 18 22 impbid1 KProsetxByxyKB×B
24 6 23 bitr4id KProsetxdomKB×BxB
25 4 24 bitrid KProsetxdom˙xB
26 25 eqrdv KProsetdom˙=B