Step |
Hyp |
Ref |
Expression |
1 |
|
ressprs.b |
|
2 |
|
ovexd |
|
3 |
|
simp-4l |
|
4 |
|
simp-4r |
|
5 |
|
simpllr |
|
6 |
4 5
|
sseldd |
|
7 |
3 6
|
jca |
|
8 |
|
simplr |
|
9 |
4 8
|
sseldd |
|
10 |
|
simpr |
|
11 |
4 10
|
sseldd |
|
12 |
|
eqid |
|
13 |
1 12
|
isprs |
|
14 |
13
|
simprbi |
|
15 |
14
|
r19.21bi |
|
16 |
15
|
r19.21bi |
|
17 |
16
|
r19.21bi |
|
18 |
7 9 11 17
|
syl21anc |
|
19 |
18
|
ralrimiva |
|
20 |
19
|
ralrimiva |
|
21 |
20
|
ralrimiva |
|
22 |
|
eqid |
|
23 |
22 1
|
ressbas2 |
|
24 |
23
|
adantl |
|
25 |
1
|
fvexi |
|
26 |
25
|
ssex |
|
27 |
22 12
|
ressle |
|
28 |
26 27
|
syl |
|
29 |
28
|
adantl |
|
30 |
29
|
breqd |
|
31 |
29
|
breqd |
|
32 |
29
|
breqd |
|
33 |
31 32
|
anbi12d |
|
34 |
29
|
breqd |
|
35 |
33 34
|
imbi12d |
|
36 |
30 35
|
anbi12d |
|
37 |
24 36
|
raleqbidv |
|
38 |
24 37
|
raleqbidv |
|
39 |
24 38
|
raleqbidv |
|
40 |
39
|
anbi2d |
|
41 |
2 21 40
|
mpbi2and |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
42 43
|
isprs |
|
45 |
41 44
|
sylibr |
|