Description: Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oduprs.d | |
|
Assertion | oduprs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oduprs.d | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | isprs | |
5 | 4 | simprbi | |
6 | 5 | r19.21bi | |
7 | 6 | r19.21bi | |
8 | 7 | r19.21bi | |
9 | 8 | simpld | |
10 | vex | |
|
11 | 10 10 | brcnv | |
12 | 9 11 | sylibr | |
13 | 2 3 | isprs | |
14 | 13 | simprbi | |
15 | 14 | r19.21bi | |
16 | 15 | r19.21bi | |
17 | 16 | r19.21bi | |
18 | 17 | simprd | |
19 | 18 | an32s | |
20 | 19 | ex | |
21 | 20 | an32s | |
22 | 21 | imp | |
23 | 22 | an32s | |
24 | vex | |
|
25 | 10 24 | brcnv | |
26 | vex | |
|
27 | 24 26 | brcnv | |
28 | 25 27 | anbi12ci | |
29 | 10 26 | brcnv | |
30 | 23 28 29 | 3imtr4g | |
31 | 12 30 | jca | |
32 | 31 | ralrimiva | |
33 | 32 | ralrimiva | |
34 | 33 | ralrimiva | |
35 | 1 | fvexi | |
36 | 34 35 | jctil | |
37 | 1 2 | odubas | |
38 | 1 3 | oduleval | |
39 | 37 38 | isprs | |
40 | 36 39 | sylibr | |