Metamath Proof Explorer


Theorem posrasymb

Description: A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypotheses posrasymb.b B=BaseK
posrasymb.l ˙=KB×B
Assertion posrasymb KPosetXBYBX˙YY˙XX=Y

Proof

Step Hyp Ref Expression
1 posrasymb.b B=BaseK
2 posrasymb.l ˙=KB×B
3 2 breqi X˙YXKB×BY
4 simp2 KPosetXBYBXB
5 simp3 KPosetXBYBYB
6 brxp XB×BYXBYB
7 4 5 6 sylanbrc KPosetXBYBXB×BY
8 brin XKB×BYXKYXB×BY
9 8 rbaib XB×BYXKB×BYXKY
10 7 9 syl KPosetXBYBXKB×BYXKY
11 3 10 bitrid KPosetXBYBX˙YXKY
12 2 breqi Y˙XYKB×BX
13 brxp YB×BXYBXB
14 5 4 13 sylanbrc KPosetXBYBYB×BX
15 brin YKB×BXYKXYB×BX
16 15 rbaib YB×BXYKB×BXYKX
17 14 16 syl KPosetXBYBYKB×BXYKX
18 12 17 bitrid KPosetXBYBY˙XYKX
19 11 18 anbi12d KPosetXBYBX˙YY˙XXKYYKX
20 eqid K=K
21 1 20 posasymb KPosetXBYBXKYYKXX=Y
22 19 21 bitrd KPosetXBYBX˙YY˙XX=Y