Metamath Proof Explorer


Theorem posrasymb

Description: A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypotheses posrasymb.b 𝐵 = ( Base ‘ 𝐾 )
posrasymb.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
Assertion posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 posrasymb.b 𝐵 = ( Base ‘ 𝐾 )
2 posrasymb.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 2 breqi ( 𝑋 𝑌𝑋 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑌 )
4 simp2 ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
5 simp3 ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
6 brxp ( 𝑋 ( 𝐵 × 𝐵 ) 𝑌 ↔ ( 𝑋𝐵𝑌𝐵 ) )
7 4 5 6 sylanbrc ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋 ( 𝐵 × 𝐵 ) 𝑌 )
8 brin ( 𝑋 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑋 ( 𝐵 × 𝐵 ) 𝑌 ) )
9 8 rbaib ( 𝑋 ( 𝐵 × 𝐵 ) 𝑌 → ( 𝑋 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
10 7 9 syl ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
11 3 10 syl5bb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
12 2 breqi ( 𝑌 𝑋𝑌 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑋 )
13 brxp ( 𝑌 ( 𝐵 × 𝐵 ) 𝑋 ↔ ( 𝑌𝐵𝑋𝐵 ) )
14 5 4 13 sylanbrc ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌 ( 𝐵 × 𝐵 ) 𝑋 )
15 brin ( 𝑌 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑋 ↔ ( 𝑌 ( le ‘ 𝐾 ) 𝑋𝑌 ( 𝐵 × 𝐵 ) 𝑋 ) )
16 15 rbaib ( 𝑌 ( 𝐵 × 𝐵 ) 𝑋 → ( 𝑌 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
17 14 16 syl ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
18 12 17 syl5bb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
19 11 18 anbi12d ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) )
20 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
21 1 20 posasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑌 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 = 𝑌 ) )
22 19 21 bitrd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )