| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posrasymb.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | posrasymb.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 | 2 | breqi | ⊢ ( 𝑋  ≤  𝑌  ↔  𝑋 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑌 ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | brxp | ⊢ ( 𝑋 ( 𝐵  ×  𝐵 ) 𝑌  ↔  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 7 | 4 5 6 | sylanbrc | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋 ( 𝐵  ×  𝐵 ) 𝑌 ) | 
						
							| 8 |  | brin | ⊢ ( 𝑋 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑌  ↔  ( 𝑋 ( le ‘ 𝐾 ) 𝑌  ∧  𝑋 ( 𝐵  ×  𝐵 ) 𝑌 ) ) | 
						
							| 9 | 8 | rbaib | ⊢ ( 𝑋 ( 𝐵  ×  𝐵 ) 𝑌  →  ( 𝑋 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑌  ↔  𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑌  ↔  𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 11 | 3 10 | bitrid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  ↔  𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 12 | 2 | breqi | ⊢ ( 𝑌  ≤  𝑋  ↔  𝑌 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑋 ) | 
						
							| 13 |  | brxp | ⊢ ( 𝑌 ( 𝐵  ×  𝐵 ) 𝑋  ↔  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 14 | 5 4 13 | sylanbrc | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌 ( 𝐵  ×  𝐵 ) 𝑋 ) | 
						
							| 15 |  | brin | ⊢ ( 𝑌 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑋  ↔  ( 𝑌 ( le ‘ 𝐾 ) 𝑋  ∧  𝑌 ( 𝐵  ×  𝐵 ) 𝑋 ) ) | 
						
							| 16 | 15 | rbaib | ⊢ ( 𝑌 ( 𝐵  ×  𝐵 ) 𝑋  →  ( 𝑌 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑋  ↔  𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌 ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) 𝑋  ↔  𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 18 | 12 17 | bitrid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  ≤  𝑋  ↔  𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 19 | 11 18 | anbi12d | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  ( 𝑋 ( le ‘ 𝐾 ) 𝑌  ∧  𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 21 | 1 20 | posasymb | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌  ∧  𝑌 ( le ‘ 𝐾 ) 𝑋 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 22 | 19 21 | bitrd | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  𝑋  =  𝑌 ) ) |