Description: Lemma for prtex and prter3 . (Contributed by Rodolfo Medina, 13-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | prtlem12 | |- ( .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } -> Rel .~ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv | |- Rel { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
2 | releq | |- ( .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } -> ( Rel .~ <-> Rel { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } ) ) |
|
3 | 1 2 | mpbiri | |- ( .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } -> Rel .~ ) |