Metamath Proof Explorer


Theorem prtlem60

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 9-Oct-2010)

Ref Expression
Hypotheses prtlem60.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
prtlem60.2
|- ( ps -> ( th -> ta ) )
Assertion prtlem60
|- ( ph -> ( ps -> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 prtlem60.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 prtlem60.2
 |-  ( ps -> ( th -> ta ) )
3 2 a1i
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
4 1 3 syldd
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )