Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 9-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prtlem60.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
prtlem60.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) | ||
Assertion | prtlem60 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜏 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem60.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) | |
2 | prtlem60.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) | |
3 | 2 | a1i | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜏 ) ) ) |
4 | 1 3 | syldd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜏 ) ) ) |