| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdval.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psdval.b |
|- B = ( Base ` S ) |
| 3 |
|
psdval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 4 |
|
psdval.x |
|- ( ph -> X e. I ) |
| 5 |
|
psdval.f |
|- ( ph -> F e. B ) |
| 6 |
|
psdcoef.k |
|- ( ph -> K e. D ) |
| 7 |
|
fveq1 |
|- ( k = K -> ( k ` X ) = ( K ` X ) ) |
| 8 |
7
|
oveq1d |
|- ( k = K -> ( ( k ` X ) + 1 ) = ( ( K ` X ) + 1 ) ) |
| 9 |
|
fvoveq1 |
|- ( k = K -> ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 10 |
8 9
|
oveq12d |
|- ( k = K -> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 11 |
1 2 3 4 5
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) = ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 12 |
|
ovexd |
|- ( ph -> ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V ) |
| 13 |
10 11 6 12
|
fvmptd4 |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` K ) = ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |