| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psref.1 |
|- X = dom R |
| 2 |
|
psdmrn |
|- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |
| 3 |
2
|
simpld |
|- ( R e. PosetRel -> dom R = U. U. R ) |
| 4 |
1 3
|
eqtrid |
|- ( R e. PosetRel -> X = U. U. R ) |
| 5 |
4
|
eleq2d |
|- ( R e. PosetRel -> ( A e. X <-> A e. U. U. R ) ) |
| 6 |
|
pslem |
|- ( R e. PosetRel -> ( ( ( A R A /\ A R A ) -> A R A ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R A /\ A R A ) -> A = A ) ) ) |
| 7 |
6
|
simp2d |
|- ( R e. PosetRel -> ( A e. U. U. R -> A R A ) ) |
| 8 |
5 7
|
sylbid |
|- ( R e. PosetRel -> ( A e. X -> A R A ) ) |
| 9 |
8
|
imp |
|- ( ( R e. PosetRel /\ A e. X ) -> A R A ) |