| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
|- dom R C_ ( dom R u. ran R ) |
| 2 |
|
dmrnssfld |
|- ( dom R u. ran R ) C_ U. U. R |
| 3 |
1 2
|
sstri |
|- dom R C_ U. U. R |
| 4 |
3
|
a1i |
|- ( R e. PosetRel -> dom R C_ U. U. R ) |
| 5 |
|
pslem |
|- ( R e. PosetRel -> ( ( ( x R x /\ x R x ) -> x R x ) /\ ( x e. U. U. R -> x R x ) /\ ( ( x R x /\ x R x ) -> x = x ) ) ) |
| 6 |
5
|
simp2d |
|- ( R e. PosetRel -> ( x e. U. U. R -> x R x ) ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
7 7
|
breldm |
|- ( x R x -> x e. dom R ) |
| 9 |
6 8
|
syl6 |
|- ( R e. PosetRel -> ( x e. U. U. R -> x e. dom R ) ) |
| 10 |
9
|
ssrdv |
|- ( R e. PosetRel -> U. U. R C_ dom R ) |
| 11 |
4 10
|
eqssd |
|- ( R e. PosetRel -> dom R = U. U. R ) |
| 12 |
|
ssun2 |
|- ran R C_ ( dom R u. ran R ) |
| 13 |
12 2
|
sstri |
|- ran R C_ U. U. R |
| 14 |
13
|
a1i |
|- ( R e. PosetRel -> ran R C_ U. U. R ) |
| 15 |
7 7
|
brelrn |
|- ( x R x -> x e. ran R ) |
| 16 |
6 15
|
syl6 |
|- ( R e. PosetRel -> ( x e. U. U. R -> x e. ran R ) ) |
| 17 |
16
|
ssrdv |
|- ( R e. PosetRel -> U. U. R C_ ran R ) |
| 18 |
14 17
|
eqssd |
|- ( R e. PosetRel -> ran R = U. U. R ) |
| 19 |
11 18
|
jca |
|- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |