| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 2 |
|
dmrnssfld |
⊢ ( dom 𝑅 ∪ ran 𝑅 ) ⊆ ∪ ∪ 𝑅 |
| 3 |
1 2
|
sstri |
⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
| 4 |
3
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 ⊆ ∪ ∪ 𝑅 ) |
| 5 |
|
pslem |
⊢ ( 𝑅 ∈ PosetRel → ( ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) → 𝑥 𝑅 𝑥 ) ∧ ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) → 𝑥 = 𝑥 ) ) ) |
| 6 |
5
|
simp2d |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 𝑅 𝑥 ) ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7 7
|
breldm |
⊢ ( 𝑥 𝑅 𝑥 → 𝑥 ∈ dom 𝑅 ) |
| 9 |
6 8
|
syl6 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ dom 𝑅 ) ) |
| 10 |
9
|
ssrdv |
⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ dom 𝑅 ) |
| 11 |
4 10
|
eqssd |
⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅 ) |
| 12 |
|
ssun2 |
⊢ ran 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 13 |
12 2
|
sstri |
⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
| 14 |
13
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 ⊆ ∪ ∪ 𝑅 ) |
| 15 |
7 7
|
brelrn |
⊢ ( 𝑥 𝑅 𝑥 → 𝑥 ∈ ran 𝑅 ) |
| 16 |
6 15
|
syl6 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ ran 𝑅 ) ) |
| 17 |
16
|
ssrdv |
⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ ran 𝑅 ) |
| 18 |
14 17
|
eqssd |
⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 = ∪ ∪ 𝑅 ) |
| 19 |
11 18
|
jca |
⊢ ( 𝑅 ∈ PosetRel → ( dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅 ) ) |