| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrel |
⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) |
| 2 |
|
brrelex12 |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 4 |
|
brrelex2 |
⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐶 ) → 𝐶 ∈ V ) |
| 5 |
1 4
|
sylan |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐵 𝑅 𝐶 ) → 𝐶 ∈ V ) |
| 6 |
3 5
|
anim12dan |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐶 ∈ V ) ) |
| 7 |
|
pstr2 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 8 |
|
cotr |
⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) |
| 12 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
| 14 |
|
breq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ 𝐵 𝑅 𝐶 ) ) |
| 15 |
14
|
3adant1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ 𝐵 𝑅 𝐶 ) ) |
| 16 |
13 15
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 17 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝐶 ) ) |
| 18 |
17
|
3adant2 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝐶 ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 20 |
19
|
spc3gv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 21 |
20
|
3expa |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐶 ∈ V ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 22 |
6 10 11 21
|
syl3c |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐴 𝑅 𝐶 ) |
| 23 |
22
|
ex |
⊢ ( 𝑅 ∈ PosetRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 24 |
|
psref2 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 25 |
|
asymref2 |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 26 |
25
|
simplbi |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) → ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ) |
| 27 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
| 28 |
27
|
anidms |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
| 29 |
28
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 → ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ) |
| 30 |
24 26 29
|
3syl |
⊢ ( 𝑅 ∈ PosetRel → ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ) |
| 31 |
3
|
adantrr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 32 |
25
|
simprbi |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 33 |
24 32
|
syl |
⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 35 |
|
simpr |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) → ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) |
| 36 |
|
breq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝐵 𝑅 𝐴 ) ) |
| 37 |
36
|
ancoms |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 𝑅 𝑥 ↔ 𝐵 𝑅 𝐴 ) ) |
| 38 |
12 37
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) ) |
| 39 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
| 40 |
38 39
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) ) |
| 41 |
40
|
spc2gv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) ) |
| 42 |
31 34 35 41
|
syl3c |
⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) → 𝐴 = 𝐵 ) |
| 43 |
42
|
ex |
⊢ ( 𝑅 ∈ PosetRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) |
| 44 |
23 30 43
|
3jca |
⊢ ( 𝑅 ∈ PosetRel → ( ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ∧ ( 𝐴 ∈ ∪ ∪ 𝑅 → 𝐴 𝑅 𝐴 ) ∧ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) → 𝐴 = 𝐵 ) ) ) |