Step |
Hyp |
Ref |
Expression |
1 |
|
pthdepisspth |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( SPaths ` G ) P ) |
2 |
1
|
ex |
|- ( F ( Paths ` G ) P -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> F ( SPaths ` G ) P ) ) |
3 |
2
|
necon1bd |
|- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
4 |
3
|
anc2li |
|- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
5 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
6 |
4 5
|
syl6ibr |
|- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> F ( Cycles ` G ) P ) ) |
7 |
6
|
orrd |
|- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |