Step |
Hyp |
Ref |
Expression |
1 |
|
pthistrl |
|- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
2 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
3
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
5 |
4
|
ffund |
|- ( F ( Walks ` G ) P -> Fun P ) |
6 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
7 |
6
|
adantr |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
8 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
9 |
8
|
simp2d |
|- ( F ( Walks ` G ) P -> F e. _V ) |
10 |
|
hasheq0 |
|- ( F e. _V -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
11 |
10
|
biimpar |
|- ( ( F e. _V /\ F = (/) ) -> ( # ` F ) = 0 ) |
12 |
9 11
|
sylan |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> ( # ` F ) = 0 ) |
13 |
|
oveq1 |
|- ( ( # ` F ) = 0 -> ( ( # ` F ) + 1 ) = ( 0 + 1 ) ) |
14 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
15 |
13 14
|
eqtrdi |
|- ( ( # ` F ) = 0 -> ( ( # ` F ) + 1 ) = 1 ) |
16 |
12 15
|
syl |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> ( ( # ` F ) + 1 ) = 1 ) |
17 |
7 16
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> ( # ` P ) = 1 ) |
18 |
8
|
simp3d |
|- ( F ( Walks ` G ) P -> P e. _V ) |
19 |
|
hashen1 |
|- ( P e. _V -> ( ( # ` P ) = 1 <-> P ~~ 1o ) ) |
20 |
18 19
|
syl |
|- ( F ( Walks ` G ) P -> ( ( # ` P ) = 1 <-> P ~~ 1o ) ) |
21 |
20
|
biimpa |
|- ( ( F ( Walks ` G ) P /\ ( # ` P ) = 1 ) -> P ~~ 1o ) |
22 |
17 21
|
syldan |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> P ~~ 1o ) |
23 |
|
funen1cnv |
|- ( ( Fun P /\ P ~~ 1o ) -> Fun `' P ) |
24 |
5 22 23
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> Fun `' P ) |
25 |
2 24
|
sylan |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> Fun `' P ) |
26 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
27 |
26
|
biimpri |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> F ( SPaths ` G ) P ) |
28 |
1 25 27
|
syl2an2r |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> F ( SPaths ` G ) P ) |
29 |
|
fveq2 |
|- ( 0 = ( # ` F ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
30 |
29
|
eqcoms |
|- ( ( # ` F ) = 0 -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
31 |
12 30
|
syl |
|- ( ( F ( Walks ` G ) P /\ F = (/) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
32 |
2 31
|
sylan |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
33 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
34 |
33
|
biimpri |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> F ( Cycles ` G ) P ) |
35 |
32 34
|
syldan |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> F ( Cycles ` G ) P ) |
36 |
28 35
|
jca |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) -> ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) ) |
37 |
|
spthispth |
|- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
38 |
37
|
adantr |
|- ( ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) -> F ( Paths ` G ) P ) |
39 |
|
notnot |
|- ( F ( SPaths ` G ) P -> -. -. F ( SPaths ` G ) P ) |
40 |
|
cyclnspth |
|- ( F =/= (/) -> ( F ( Cycles ` G ) P -> -. F ( SPaths ` G ) P ) ) |
41 |
40
|
com12 |
|- ( F ( Cycles ` G ) P -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
42 |
41
|
con3dimp |
|- ( ( F ( Cycles ` G ) P /\ -. -. F ( SPaths ` G ) P ) -> -. F =/= (/) ) |
43 |
|
nne |
|- ( -. F =/= (/) <-> F = (/) ) |
44 |
42 43
|
sylib |
|- ( ( F ( Cycles ` G ) P /\ -. -. F ( SPaths ` G ) P ) -> F = (/) ) |
45 |
39 44
|
sylan2 |
|- ( ( F ( Cycles ` G ) P /\ F ( SPaths ` G ) P ) -> F = (/) ) |
46 |
45
|
ancoms |
|- ( ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) -> F = (/) ) |
47 |
38 46
|
jca |
|- ( ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) -> ( F ( Paths ` G ) P /\ F = (/) ) ) |
48 |
36 47
|
impbii |
|- ( ( F ( Paths ` G ) P /\ F = (/) ) <-> ( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) ) |