| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pthistrl |
|
| 2 |
|
pthiswlk |
|
| 3 |
|
eqid |
|
| 4 |
3
|
wlkp |
|
| 5 |
4
|
ffund |
|
| 6 |
|
wlklenvp1 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
wlkv |
|
| 9 |
8
|
simp2d |
|
| 10 |
|
hasheq0 |
|
| 11 |
10
|
biimpar |
|
| 12 |
9 11
|
sylan |
|
| 13 |
|
oveq1 |
|
| 14 |
|
0p1e1 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
12 15
|
syl |
|
| 17 |
7 16
|
eqtrd |
|
| 18 |
8
|
simp3d |
|
| 19 |
|
hashen1 |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
biimpa |
|
| 22 |
17 21
|
syldan |
|
| 23 |
|
funen1cnv |
|
| 24 |
5 22 23
|
syl2an2r |
|
| 25 |
2 24
|
sylan |
|
| 26 |
|
isspth |
|
| 27 |
26
|
biimpri |
|
| 28 |
1 25 27
|
syl2an2r |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
eqcoms |
|
| 31 |
12 30
|
syl |
|
| 32 |
2 31
|
sylan |
|
| 33 |
|
iscycl |
|
| 34 |
33
|
biimpri |
|
| 35 |
32 34
|
syldan |
|
| 36 |
28 35
|
jca |
|
| 37 |
|
spthispth |
|
| 38 |
37
|
adantr |
|
| 39 |
|
notnot |
|
| 40 |
|
cyclnspth |
|
| 41 |
40
|
com12 |
|
| 42 |
41
|
con3dimp |
|
| 43 |
|
nne |
|
| 44 |
42 43
|
sylib |
|
| 45 |
39 44
|
sylan2 |
|
| 46 |
45
|
ancoms |
|
| 47 |
38 46
|
jca |
|
| 48 |
36 47
|
impbii |
|