Metamath Proof Explorer


Theorem spthcycl

Description: A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023)

Ref Expression
Assertion spthcycl F Paths G P F = F SPaths G P F Cycles G P

Proof

Step Hyp Ref Expression
1 pthistrl F Paths G P F Trails G P
2 pthiswlk F Paths G P F Walks G P
3 eqid Vtx G = Vtx G
4 3 wlkp F Walks G P P : 0 F Vtx G
5 4 ffund F Walks G P Fun P
6 wlklenvp1 F Walks G P P = F + 1
7 6 adantr F Walks G P F = P = F + 1
8 wlkv F Walks G P G V F V P V
9 8 simp2d F Walks G P F V
10 hasheq0 F V F = 0 F =
11 10 biimpar F V F = F = 0
12 9 11 sylan F Walks G P F = F = 0
13 oveq1 F = 0 F + 1 = 0 + 1
14 0p1e1 0 + 1 = 1
15 13 14 eqtrdi F = 0 F + 1 = 1
16 12 15 syl F Walks G P F = F + 1 = 1
17 7 16 eqtrd F Walks G P F = P = 1
18 8 simp3d F Walks G P P V
19 hashen1 P V P = 1 P 1 𝑜
20 18 19 syl F Walks G P P = 1 P 1 𝑜
21 20 biimpa F Walks G P P = 1 P 1 𝑜
22 17 21 syldan F Walks G P F = P 1 𝑜
23 funen1cnv Fun P P 1 𝑜 Fun P -1
24 5 22 23 syl2an2r F Walks G P F = Fun P -1
25 2 24 sylan F Paths G P F = Fun P -1
26 isspth F SPaths G P F Trails G P Fun P -1
27 26 biimpri F Trails G P Fun P -1 F SPaths G P
28 1 25 27 syl2an2r F Paths G P F = F SPaths G P
29 fveq2 0 = F P 0 = P F
30 29 eqcoms F = 0 P 0 = P F
31 12 30 syl F Walks G P F = P 0 = P F
32 2 31 sylan F Paths G P F = P 0 = P F
33 iscycl F Cycles G P F Paths G P P 0 = P F
34 33 biimpri F Paths G P P 0 = P F F Cycles G P
35 32 34 syldan F Paths G P F = F Cycles G P
36 28 35 jca F Paths G P F = F SPaths G P F Cycles G P
37 spthispth F SPaths G P F Paths G P
38 37 adantr F SPaths G P F Cycles G P F Paths G P
39 notnot F SPaths G P ¬ ¬ F SPaths G P
40 cyclnspth F F Cycles G P ¬ F SPaths G P
41 40 com12 F Cycles G P F ¬ F SPaths G P
42 41 con3dimp F Cycles G P ¬ ¬ F SPaths G P ¬ F
43 nne ¬ F F =
44 42 43 sylib F Cycles G P ¬ ¬ F SPaths G P F =
45 39 44 sylan2 F Cycles G P F SPaths G P F =
46 45 ancoms F SPaths G P F Cycles G P F =
47 38 46 jca F SPaths G P F Cycles G P F Paths G P F =
48 36 47 impbii F Paths G P F = F SPaths G P F Cycles G P