Metamath Proof Explorer


Theorem isspth

Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion isspth FSPathsGPFTrailsGPFunP-1

Proof

Step Hyp Ref Expression
1 spthsfval SPathsG=fp|fTrailsGpFunp-1
2 cnveq p=Pp-1=P-1
3 2 funeqd p=PFunp-1FunP-1
4 3 adantl f=Fp=PFunp-1FunP-1
5 reltrls RelTrailsG
6 1 4 5 brfvopabrbr FSPathsGPFTrailsGPFunP-1