Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cyclnspth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscycl | |
|
2 | relpths | |
|
3 | 2 | brrelex1i | |
4 | hasheq0 | |
|
5 | 4 | necon3bid | |
6 | 5 | bicomd | |
7 | 3 6 | syl | |
8 | 7 | biimpa | |
9 | spthdep | |
|
10 | 9 | neneqd | |
11 | 10 | expcom | |
12 | 8 11 | syl | |
13 | 12 | con2d | |
14 | 13 | impancom | |
15 | 1 14 | sylbi | |
16 | 15 | com12 | |