| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 2 |
|
relpths |
|- Rel ( Paths ` G ) |
| 3 |
2
|
brrelex1i |
|- ( F ( Paths ` G ) P -> F e. _V ) |
| 4 |
|
hasheq0 |
|- ( F e. _V -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
| 5 |
4
|
necon3bid |
|- ( F e. _V -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
| 6 |
5
|
bicomd |
|- ( F e. _V -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
| 7 |
3 6
|
syl |
|- ( F ( Paths ` G ) P -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
| 8 |
7
|
biimpa |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
| 9 |
|
spthdep |
|- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
| 10 |
9
|
neneqd |
|- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 11 |
10
|
expcom |
|- ( ( # ` F ) =/= 0 -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 12 |
8 11
|
syl |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 13 |
12
|
con2d |
|- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> -. F ( SPaths ` G ) P ) ) |
| 14 |
13
|
impancom |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
| 15 |
1 14
|
sylbi |
|- ( F ( Cycles ` G ) P -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
| 16 |
15
|
com12 |
|- ( F =/= (/) -> ( F ( Cycles ` G ) P -> -. F ( SPaths ` G ) P ) ) |