| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
| 2 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
3
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 5 |
2 4
|
syl |
|- ( F ( Trails ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 6 |
5
|
anim1i |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
| 7 |
|
df-f1 |
|- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
| 8 |
6 7
|
sylibr |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 9 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 10 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 11 |
10
|
biimpi |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 12 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 13 |
11 12
|
jca |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 14 |
2 9 13
|
3syl |
|- ( F ( Trails ` G ) P -> ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 15 |
14
|
adantr |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 16 |
8 15
|
jca |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) ) |
| 17 |
|
eqcom |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
| 18 |
|
f1veqaeq |
|- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) |
| 19 |
17 18
|
biimtrid |
|- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) = 0 ) ) |
| 20 |
16 19
|
syl |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) = 0 ) ) |
| 21 |
20
|
necon3d |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( # ` F ) =/= 0 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 22 |
1 21
|
sylbi |
|- ( F ( SPaths ` G ) P -> ( ( # ` F ) =/= 0 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 23 |
22
|
imp |
|- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |