| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| 2 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 4 |
3
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 6 |
5
|
anim1i |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ 𝑃 ) ) |
| 7 |
|
df-f1 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ 𝑃 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| 9 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 10 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 12 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 |
11 12
|
jca |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 14 |
2 9 13
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 16 |
8 15
|
jca |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 17 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) ) |
| 18 |
|
f1veqaeq |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) → ( ♯ ‘ 𝐹 ) = 0 ) ) |
| 19 |
17 18
|
biimtrid |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) = 0 ) ) |
| 20 |
16 19
|
syl |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) = 0 ) ) |
| 21 |
20
|
necon3d |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 22 |
1 21
|
sylbi |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |