Step |
Hyp |
Ref |
Expression |
1 |
|
pthistrl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
2 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
4 |
3
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
5 |
4
|
ffund |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Fun 𝑃 ) |
6 |
|
wlklenvp1 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
8 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
9 |
8
|
simp2d |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ V ) |
10 |
|
hasheq0 |
⊢ ( 𝐹 ∈ V → ( ( ♯ ‘ 𝐹 ) = 0 ↔ 𝐹 = ∅ ) ) |
11 |
10
|
biimpar |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 = ∅ ) → ( ♯ ‘ 𝐹 ) = 0 ) |
12 |
9 11
|
sylan |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( ♯ ‘ 𝐹 ) = 0 ) |
13 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( ♯ ‘ 𝐹 ) + 1 ) = ( 0 + 1 ) ) |
14 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
15 |
13 14
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( ♯ ‘ 𝐹 ) + 1 ) = 1 ) |
16 |
12 15
|
syl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( ( ♯ ‘ 𝐹 ) + 1 ) = 1 ) |
17 |
7 16
|
eqtrd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( ♯ ‘ 𝑃 ) = 1 ) |
18 |
8
|
simp3d |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ V ) |
19 |
|
hashen1 |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 1 ↔ 𝑃 ≈ 1o ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝑃 ) = 1 ↔ 𝑃 ≈ 1o ) ) |
21 |
20
|
biimpa |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝑃 ≈ 1o ) |
22 |
17 21
|
syldan |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → 𝑃 ≈ 1o ) |
23 |
|
funen1cnv |
⊢ ( ( Fun 𝑃 ∧ 𝑃 ≈ 1o ) → Fun ◡ 𝑃 ) |
24 |
5 22 23
|
syl2an2r |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → Fun ◡ 𝑃 ) |
25 |
2 24
|
sylan |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → Fun ◡ 𝑃 ) |
26 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
27 |
26
|
biimpri |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
28 |
1 25 27
|
syl2an2r |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
29 |
|
fveq2 |
⊢ ( 0 = ( ♯ ‘ 𝐹 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
30 |
29
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
31 |
12 30
|
syl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
32 |
2 31
|
sylan |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
33 |
|
iscycl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
34 |
33
|
biimpri |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |
35 |
32 34
|
syldan |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |
36 |
28 35
|
jca |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) ) |
37 |
|
spthispth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
38 |
37
|
adantr |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
39 |
|
notnot |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ¬ ¬ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
40 |
|
cyclnspth |
⊢ ( 𝐹 ≠ ∅ → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ¬ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
41 |
40
|
com12 |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ≠ ∅ → ¬ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
42 |
41
|
con3dimp |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ¬ ¬ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ¬ 𝐹 ≠ ∅ ) |
43 |
|
nne |
⊢ ( ¬ 𝐹 ≠ ∅ ↔ 𝐹 = ∅ ) |
44 |
42 43
|
sylib |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ¬ ¬ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 = ∅ ) |
45 |
39 44
|
sylan2 |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 = ∅ ) |
46 |
45
|
ancoms |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → 𝐹 = ∅ ) |
47 |
38 46
|
jca |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) ) |
48 |
36 47
|
impbii |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 𝐹 = ∅ ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) ) |