Metamath Proof Explorer


Theorem pwfi2en

Description: Finitely supported indicator functions are equinumerous to finite subsets.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015) (Revised by AV, 14-Jun-2020)

Ref Expression
Hypothesis pwfi2en.s
|- S = { y e. ( 2o ^m A ) | y finSupp (/) }
Assertion pwfi2en
|- ( A e. V -> S ~~ ( ~P A i^i Fin ) )

Proof

Step Hyp Ref Expression
1 pwfi2en.s
 |-  S = { y e. ( 2o ^m A ) | y finSupp (/) }
2 eqid
 |-  ( x e. S |-> ( `' x " { 1o } ) ) = ( x e. S |-> ( `' x " { 1o } ) )
3 1 2 pwfi2f1o
 |-  ( A e. V -> ( x e. S |-> ( `' x " { 1o } ) ) : S -1-1-onto-> ( ~P A i^i Fin ) )
4 ovex
 |-  ( 2o ^m A ) e. _V
5 1 4 rabex2
 |-  S e. _V
6 5 f1oen
 |-  ( ( x e. S |-> ( `' x " { 1o } ) ) : S -1-1-onto-> ( ~P A i^i Fin ) -> S ~~ ( ~P A i^i Fin ) )
7 3 6 syl
 |-  ( A e. V -> S ~~ ( ~P A i^i Fin ) )